
A7D-AIOG 822 AIR FORCE INST OF TECH VRISHT-PATTERSON AFB OH SCHOO--ETC F/B 9/2
DEIN OF A LOCAL COMPUTER NETWORK FOR THE AIR FORCE INSTITUTE -CCUI

MAR S1 V C HOBART

UNCLASSIFIED AFIT/GE/EE/81M-3

MENOEEEEEEEI

LEVEVII
)1

~DTIC

EECT--I
, LJUL 1 1981

DEPARTMENT OF THE AIR FORCES
AM UNIVEIlTY (ATC)D

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DRBUTION STATMENT A 6 6-10 040
Approed for public tele.s.

Disftbutxion Unlimited-

AFIT/GE/EE/81M-3

ccessc.: For

NTIS GNA&I

DTIC TAB

DiUt 1'.]utce
U1), :L :j0 ir) ,, , .

jDlAv, i j

DESIGN OF A LOCAL COMPUTER NETWORK
FOR THP

AIR FORCE INSTITUTE OF TECHNOLOGY
DIGITAL ENGINEERING LABORATORY.

THESIS,

AFIT/GE/EE/8lM-3 4William C. Hobart, Jr.

Captain USAF

Approved for public release; distribution unlimited.

A V !'; _ .: :/ _.

AFIT/GE/EE/ 81M-3

DESIGN OF A LOCAL COMPUTER NETW ORK

FOR THE

AIR FORCE INSTITUTE OF TECHNOLOGYj

DIGITAL ENGINEERING LABORATORY

TH ES IS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

William C. Hobart, Jr., B.S.

Captain USAF

Graduate Electrical Engineering

March 1981

Approved for public release; distribution unlimited.

This work presents a design of a local computer network

for the Digital Engineering Laboratory which I hope will

provide a sound basis for the follow-on implementation

efforts and later network expansion. The design is based

upon techniques developed by Tom DeMarco, Edward Yourdon,

and Larry Constantine and I gratefully acknowledge the part

their techniques played in making my task simpler.

I would like to express my deep appreciation to Dr,

Gary B. Lamont, who as my research advisor gave me valuable

guidance and encouragement. Also, I thank my thesis

readers, Dr. Thomas Hartrun and Captain Walter Seward whose

constructive comments helped to improve the clarity of this

thesis. In addition, I am indebted to the faculty members

whom I interviewed to assess the requirements of the Digital

Engineering Laboratory for a local computer network.

Finally, I wish to thank my wife, Linnea, for her help

and encouragement during the past year.

William C. Hobart, Jr.

Contents

Page

Preface .. % i

List of Figures 0 v

List of Tables vii

Abstract* viii

I. Introduction 1

Historical Perspective 1
Background 5
Objective of This Investigation 6
Approach 6
Overview of the Thesis 8

II. DELNET Functional Requirements 10

Introduction 10
Background 10
User Survey 12
Projected Uses of DELNET 14
User-oriented Functional Requirements 15
Design-oriented Functional Requirements 19
Other User Requirements 22
Constraints on DELNET 23
Summary 24

III. DELNET System Requirements 26

Introduction 26
System Hardware Requirements 27

Topology 27
Host Computers * . 0 27
Nodes 0 #* . . . 28
Transmission Medium & o 29

Structured Specification of the Protocol
Requirements 29

Introduction . o * a o e e * e * o e o * 29
Context Diagram o . o . o o 33
System Diagram . . - o 34
Host-to-Host Protocol Requirements 42
Network Protocol Requirements o . o 60
Routing Algorithm Requirements 63
Link Protocol Requirements . o 63
Physical Protocol Requirements 81

Summary 81

iii

Page

IV. Design of DELNET 83

Introduction* , . . * . . 83
Hardware Design . . . * . . 0 83

Topology o o 83
Hosts * . * * . 0 0 * . * . 0 * 0 86
Nodes . . . 0 0 q 0 . , . 87
Transmission Medium 88

Software Design 9 89

Introduction 89
Allocation of Software Modules 92
High-level Protocol Design o o .. . 93
Lower-level Protocol Design 98

Summary 102

V. Implementation and Testing of the Network Command
Language Interpreter 103

Introduction . . o 103
Implementation 103
Testingo o 108

Summary . . o o . o 110

VI. Conclusions and Recommendations Ill

Recommendations o 112

Bibliography .I.n.. 115

Appendix A: User Interview Results 117

Appendix B: Digital Engineering Laboratory FlooL Layout
Diagram 129

Appendix C: Structured Specification .o. 131

Appendix D: Module Structure Charts o.... 250

Appendix E: Source Code for the Network Command
Language Interpreter 282

Appendix F: Testing Dccumentation for Network Command
Language interpreter 295

Appendix G: DELNET User's Manual o 302

Vita o. 308

iv

List of Figures i

Figure Page

1 DFD Components. 30

2 Context Diagram 34

3 System Diagram 36

4 Transfer File (4.0) DFD 39

5 Transmit File (4.4) DFD 40

6 Control Session (5.0) DFD 40

7 Help User (6.0) DFD 41

8 Host-to-Host Context Diagram 44

9 X.25 Level 3 Context Diagram 46

10 X.25 Overview DFD 48

11 Execute Calling Host Protocol (1.0) DFD 49

12 Execute Calling Node Protocol (2.0) DFD 53

13 Execute Calling Host Packet (2.1) DFD 55

14 Execute Routed Called Node Packet (2.3) DFD 56

15 Execute Called Node Protocol (4.0) DFD 58

16 Execute Called Host Packet (4.1) DFD 59

17 Execute Routed Calling Node Packet (4.3) DFD 60

18 Execute Called Host Protocol (5.0) DFD 61

19 Network Protocol Context Diagram 62

20 Network Protocol Overview DFD 62

21 X.25 Level 2 (HDLC) Overview DFD 64

22 Execute HDLC Protocol at Primary Node (1.0) DFD 67

23 Extract Valid Packet (1.1) DFD 70

24 Execute Secondary I-Frame Packet (1.3) DFD 71

v

Figure Page

25 Execute S-Frame Response (1.4) DFD 72

26 Execute U-Frame Response (1.5) DFD 73

27 Window Primary Information Blocks (1.6) DFD 75

28 Execute HDLC Protocol at Secondary Node (3.0) DFD . 77

29 Execute Primary I-Frame Packet (3.3) DFD 78

30 Execute S-Frame Command (3.4) DFD 79

31 Execute U-Frame Command (3.5) DFD 79

32 Window Secondary Information Blocks (3.6) DFD . . . 80

33 Basic DELNET Topology 84

34 Initial Network Configuration 90

35 Factoring the Afferent Branch 91

36 Factoring the Transform Section 92

37 Factoring the Efferent Branch 93

38 Transform Analysis Technique 94

39 Transfer File Module Structure Chart 95

40 Transaction Analysis Technique 96

41 Help User Module Structure Chart 97

42 Allocation of Lower-level Software Modules 100

vi

List of Tables

Table Page

1 Projected Uses of DELNET 16

2 User-orienced Functional Requirements 20

3 Design-oriented Functional Requirements 22

4 Layers of Protocol 34

5 Network Operating System Process Hierarchy 35

6 Host-to-Host Protocol Process Hierarchy 43

7 Link Protocol Process Hierarchy 65

8 High-level Protocol Modules Present at Each Host . 98

9 Additional High-level Modules Present at the NOS

Host . 99

10 Valid Keywords 105

vii

Abstrac

A local computer for the Air Force Institute of

Technology Digital Engineering Laboratory was designed and

the network command language interpreter modules were

implemented. The requirements for this network were

specified by interviewing nine faculty members associated

with the Digital Engineering Laboratory and then translating

their functional requirements into a detailed set of

hardware and software system requirements. Structured

Analysis was used to produce a structured specification for

the applications, host-to-host, network, and link protocol

requirements. Yourdon and Constantine's Transform Analysis

and Transaction Analysis techniques were then used to

develop a set of module structure charts for the software

design. The network uses a loop topology for the nodes with

a star of up to four hosts connected to each node. The

nodes are implemented using a Universal Network Interface

Device (UNID) developed at the Air Force Institute of

Technology. Initially, the network will include an Intel

Series II Microcomputer Development Station, a Digital

Equipment Corporation VAX-ll/780, and a Data General Nova.

These computers will be connected to the nodes using twisted

pair and the two UNIDs in the initial configuration will be

interconnected with a duplex fiber optic link supporting

transmission rates up to 56 TRbs. The X.25 protocol was

selected to implement a host-to-host transfer mechanism in

conjunction with a basic routing algorithm using a lookup

viii

table stored in each UNID. The network command language

interpreter allows file transfer commands, session control

commands, and user help requests to be parsed and the

appropriate parameters passed to lower-level modules.

ix

I. Tntioduction

The purpose of this investigation was to design a local

computer network for the Air Force Institute of Technology

School of Engineering Digital Engineering Laboratory. This

network, named the Digital Engineering Laboratory Network

(DELNET), was first proposed in 1978 when the number of host

computers in the Digital Engineering Laboratory had grown to

six and there were insufficient peripheral devices to allow

the computers to be used to their full capacity. Local

networks at this time were becoming increasingly commonplace

in universities and corporations. This was due to their

desire to increase their information processing power

without adding additional computers. Also, universities

wishing to perform research in the area of local computer

networking were developing their own networks so that they

could have the flexibility to change network characteristics

and evaluate different network topologies, protocols, and

transmission mediums. Interest in both of these potential

activities provided the impetus for the development of a

local computer network at the Air Force Institute of

Technology.

Historica Perspective

It is only in the last decade that computer networks

have become commonplace. The development of the Defense

Advanced Research Projects Agency Network (ARPANET) probably

did more to stimulate the development of computer networks

than any other factor. This packet-switching network has

been highly successful and today continues to be the primary

computer network in the United States and ties together the

most powerful research computers in the country (Ref. 12:

5-23).

It was not until the advent of the microprocessor,

however, that local networks tailored to a particular

organization and interconnecting minicomputers became

practical. The microprocessor made local networks more

practical because it allowed economic network nodes to be

developed. These were cost-effective and yet offloaded much

of the network protocol processing overhead from the

computer hosts on the network. Also, the microprocessor

decreased the cost of computers and increased the number in

use. This made it practical for organizations to implement

a local network of microcomputers in lieu of time-sharing

off a mainframe computer.

Another significant development has been the emergence

of various link and network protocols. These protocols have

started to be standardized, but because protocol design is

still it its infancy, there is no recognized "best" protocol

for a given application (Ref. 20: 156). IBM has played a

leading role in protocol development first by introducing

the binary synchronous (BSC) protocol and later by

introducing the Systems Network Architecture (SNA) which

includes the synchronous data link control (SDLC) protocol.

SDLC was one of the first bit-oriented protocols; a set of

2

protocols which has emerged as the most ef ficient and

flexible for managing the link between two computers. The

X.25 protocol, which defines the interface of a computer to

a packet-switching network, has just recently become a

standard and could be the initial protocol for interfacing

computers in the next decade (Ref. 3: 11).

A great deal of research has been conducted to design

efficient routing algorithms which direct the flow of the

packets through the switching nodes in a network. Although

a number of efficient algorithms have been developed, this

area of research is also still in its early stages (Ref.

16: 42-97).

Until very recently, most local computer networks

available commercially were developed by a computer firm to

interface that manufacturer's systems. The only way of

interfacing other computers to that network was to develop

an emulator. This emulator would make that computer appear

at the interface as one of the manufacturer's computers to

the network. IBM's SNA and the Digital Equipment

Corporation Network (DECNET) are both examples of this type

of network (Refs. 3: 11; 7) . In the last two years, two

new local networks have become commercially available that

can interface a heterogeneous set of computers. Xerox has

introduced ETHERNET and Ungermann-Bass has developed NET/ONE

(Refs. 5,14) . Because of the state of the art techniques

used in these networks, they are worth studying in more

detail.

3

NET/ONE uses a network interface unit (NIU) , which may

contain up to four Z-80A microprocessors and 64 Kbytes of

memory, to interface up to sixteen devices to the network.

These devices may include host computers or peripheral

devices and are interfaced to the NIU using the RS-232

protocol. NET/ONE uses a bus architecture and interfaces

the NIUs to the bus through a transceiver interface

contained in each NIU. The bus is a baseband coaxial cable

supporting transmission speeds of up to 4 Mbs. Because the

NIU is connected to this cable through a passive tap, a

failure of an NIU only affects those hosts and devices on

it. The bus access mechanism uses a contention channel

protocol where each NIU can transmit whenever it senses that

the bus is idle. If it receives another NIU's transmission

while transmitting data itself, then a collision has

occurred and the packet is retransmitted a set delay after

the NIU again senses that the bus is idle (Ref. 5).

ETHERNET is very similar to a NET/ONE without the

NIUs. Tnstead each host must interface to a coaxial cable

through its own transceiver interface and handle the

contention channel protocol itself (Ref. 14).

Thus computer networks have evolved from a few

geographically distributed networks interconnecting large

mainframe computers such as ARPANET to also include high

speed local networks such as NET/ONE and ETHERNET. These

two local networks make the interconnection of a

heterogeneous set of minicomputers and microcomputers

4

practical. The standard protocols and routing algorithms

developed to date are the principal resources from which the

design of DELNET could be derived. Existing local networks

such as ETHERNET and NET/ONE also provide a basis for

comparison with the DELNET design. So, it is from this

perspective that the development of DELNET has taken place.

The following section gives some background on the previous

development efforts which preceded this particular

investigation.

Background

This effort follows two other graduate research

projects addressing the development of a local computer

network for the Digital Engineering Laboratory. R. Cade

Adams and Donald Ravenscroft conducted concurrent

investigations although with different emphases (Refs.

1,16).

Adams' investigation resulted in several general

theoretical concepts upon which that he felt that the design

of DELNET should be based. However, the conceptual design

was based upon only a cursory analysis of the actual Digital

Engineering Laboratory requirements and more upon

requirements of local networks in general (Ref. 1).

Ravenscroft's investigation was much more productive

and resulted in the design of a routing algorithm for

DELNET. Also, some recommendations were made for the choice

of a link protocol (Ref. 16). However, neither of these

investigations approached the problem from the users'

5

viewpoint and much work remained to develop a design for

DELNET that could be implemented in the Digital Engineering

Laboratory.

Objeci f Ihi Investigation

The objective of this investigation was to specify the

design of DELNET in sufficient detail that subsequent

investigations could concentrate on actually implementing

the design. The design had to be based upon the actual

requirements of the Digital Engineering Laboratory and their

projected uses of DELNET. This was imperative because

unlike ETHERNET or NET/ONE that were designed for high

throughput and automated data processing, one of the chief

uses of DELNET will be as a teaching and research tool.

Thus, flexibility in changing the protocols and topology of

the network were important for DELNET and these requirements

could not be met by NET/ONE or ETHERNET because of their

dependence on the bus architecture and the contention

channel protocol.

Aproach

The development of computer networks has not reached a

stage where there is a set development approach to be

followed. However, there are standard procedures for the

engineering development of any system and it is from these

procedures that an approach was formulated.

First, a top-down development of the design was

chosen. This approach allowed the design to first address

6A

those levels closest to the user and thereby insure that the

design was consistent with the user's requirements. Then

lower levels of the design were developed to support the

requirements of the next higher level. Care was taken,

however, to insure that each level had sharply defined

interfaces with the levels above and below it so that a

level designed with one protocol could be replaced easily

with another protocol when desired.

Due to the size of the development effort, an approach

using structured analysis and design techniques was

considered imperative, These techniques result in clear

written specifications and diagrams that provide to those

implementing the design the unambiguous information they

need.

The first phase of the investigation consisted

primarily of researching the literature and gaining a

working knowledge of computer networks, protocols, hardware

interface devices, and the capabilities of the computers in

the Digital Engineering Laboratory. Existing local computer

network architectures were studied in particular as were the

newer bit-oriented protocols being used increasingly in

local computer networks.

Once a sufficient background had been gained, a user

interview outline was designed and faculty members

associated with the Digital Engineering Laboratory were

interviewed. From these interviews, a set of projected uses

and functional requirements were compiled and these were

7

used to derive the system requirements.

The system requirements consisted of both hardware

requirements for the topology, hosts, nodes, and

transmission mediums, as well as software requirements. The

software requirements were documented using Structured

Analysis (Ref. 6) . The structured specification consisted

of a set of data flow diagrams and a data dictionary.

The system requirements were then used to develop a

hardware design and a software design of the high-level

protocols. These protocols were then partially implemented

on the VAX-l1/780 and user feedback on the performance was

obtained. The final stage of the investigation resulted in

the design of the lower-level protocols.

Overv~iew DI Thj Thesis

The structure of the thesis basically follows the

approach that was taken in the investigation. The DELNET

functional requirements are analyzed in Chapter II.

Appendix A provides supporting information including the

compilation of the results of the user interviews and a list

of those interviewed and their specific areas of interest

with respect to the Digital Engineering Laboratory.

Chapter III translates the functional requirements into

hardware and software requirements. Structured Analysis is

described and data flow diagrams are used throughout the

chapter to support the written description of the software

requirements. Supporting the hardware requirements is

Appendix B which contains a floor layout of the location of

the principal computers in the Digital Engineering

Laboratory. Appendix C contains the complete structured

specification in support of the software requirements.

The design phases of DELNET are described in Chapter

IV. The design of the hardware is specified including the

topology to be employed initially, the first hosts to be

included in the network, the node to be used in the network,

and the transmission mediums to be used. The software

design is described in three stages. First, the design

techniques that were used are summarized and module

structure charts from the DELNET design are used to

illustrate their application. Then, the allocation of the

software modules to the host and node processors is

specified. The actual software design consists of a set of

module structure charts which are in Appendix D.

Chapter V describes the implementation and testing of

the neti~ork command language interpreter. Tn this chapter,

the factors affecting implementation are described as well

as the testing techniques employed. The source code for the

implemented modules is in Appendix E while Appendix F

contains the testing documentaion. Appendix G contains the

user manual for DELNET.

Finally, Chapter VI summarizes this investigation and

gives recommendations for follow-on research efforts.

9

11. DELNET Functional Requirements

Introduction

This chapter specifies the functional requirements of

DELNET. First, the background of the requirements analysis

is discussed. In the next section, the content of the user

survey that was used to help determine the DELNET

requirements is described. Also included in this section is

a description of how the survey was conducted. The next

section summarizes the results of the survey by describing

the projected uses of DELNET as well as the users'

perception of several functional requirements. Finally,

other functional requirements as well as constraints not

addressed by the user survey are discussed.

Background

Possibly the most crucial step in developing a computer

network is the specification of the network requirements.

Yet, this phase of development was treated inadequately by

both individuals whose work this research project was

continuing (Refs. 1,16). While Adam's thesis discusses

user requirements, it only lists characteristics generally

desired of local networks and does not justify these

characteristics as being applicable to DELNET. Also, there

is no reason to believe that this list of requirements is

complete (Ref. 1). In Ravenscroft's thesis, some attention

is given to the pedagogical requirement for DELNET as well

10

as many of those requirements addressed by Adams, but

Ravenscroft's requirements analysis is also incomplete

(Ref. 16: 43). Thus, many of the design decisions that

follow in both theses are only based upon what is generally

desired in networks.

While it is possible to specify many requirements that

are generally desired in a network, using this approach

alone will result in an incomplete and inaccurate

requirements specification for several reasons. First,

local networks differ greatly in their requirements because

they usually serve only one organization (Ref. 21: 131).

Thus, the requirements for local networks are usually as

varied as the organizations themselves. Second, not all

requirements for a network may have the same importance and

the resources available (such as time or money) may not be

adequate to satisfy all requirements. Since, the relative

importance of the requirements also varies widely with each

local network, it is almost impossible to obtain a weighting

of requirements by strictly considering some "ideal network"

for all cases. Finally, there may be unique requirements

for the network and these will be overlooked if only the

requirements for the "ideal network" are considered. These

pitfalls were demonstrated when the two previous research

efforts, which were concurrent efforts, resulted in

conflicting designs. Ravenscroft did not consider the

topology recommended by Adams because of its inflexibility,

while Adams rejected the topology recommended by Ravenscroft

11

because of its complexity.

User SurveLy

A systematic approach was needed to specify the

requirements for DELNET that would tailor it to the

requirements of the Digital Engineering Laboratory. Thus, a

three-part user survey was designed.

in the first section, the users were asked what

applications could be served by DELNET from their

utilization perspectives. To aid the users being

interviewed, nine common local network applications were

listed which the user could evaluate on a five-point scale

from "of no use" to "very beneficial." These applications

included peripheral sharing among the computers in the

network, file accessing and transfers across the network,

sharing software tools on the network, accessing the

Advanced Research Projects Agency Network (ARPANET),

accessing the CYBER 750 host installation computer,

accessing the Air Force Institute of Technology Network

(AFITNET) once it is implemented, doing distributed

processing, managing distributed databases, and providing

fault tolerance. Finally, the section asked the users to

identify the applications that they felt should be

implemented first.

The second section asked the user to estimate the

requi rements from their perspectives for nine basic network

parameters. These were divided into five user-oriented

parameters and four design-oriented parameters. The

12

user-oriented parameters were throughput, response time, the

user interface, security, and availability of the network.

Each of the subsections addressing a parameter had a number

of questions to aid the user in evaluating the requirement

for that parameter. Each user was asked to identify any

other user-oriented parameters that might influence DELNET's

design. The design-oriented parameters were flexibility,

performance monitoring, special pedagogical requirements,

and the availability of a distributed processing language.

As with the user-oriented parameters, each subsection had a

number of questions to help the user evaluate the

parameter. The user was also asked to identify other

design-oriented parameters. Finally, the second section

concluded by having the user rate each of the nine

parameters on a five-point scale from "not applicable" to

"essential." This was included to help evaluate the relative

importance of the network parameters.

The third section asked the users to make any other

comments that they felt might help specify the requirements

of DELNET.

The identification of the users of DELNET was also an

important part of the requirements analysis. Although

undergraduate and graduate students will use DELNET, their

use of DELNET would be primarily at the direction of the

Electrical Engineering (EE) Department and the Mathematics

Department. Thus, the students had little interest or

insight into the projected uses of DELNET. On the other

13

hand , many faculty members had expressed an interest in

DELNET and knew what capabilities would be most useful to

the EE department. Because of this, seven EE faculty

members and two mathematics faculty members were chosen to

be interviewed. Each of those chosen represented a specific

area of interest and so the results of the interviews

represented a wide range of user applications.

Each user was interviewed for approximately forty-five

minutes to an hour and a half using the user survey

described above. Personal interviews were chosen over

regular surveys to allow each user to ask for clarification

of the various questions, and also in hope of getting more

information from the users than they nright have given in

written responses to the survey. The response to the user

interviews was excellent and the information from the user

survey was used to formulate the general requirements

specifications that follow.

Projected Use gf DELNET

The user survey results were used to determine the

projected uses of DELNET. The principal uses that were

considered most beneficial were in the area of resource

sharing. Specifically, peripheral sharing and file access

and transfer capability across DELNET were identified by all

users as being of top priority. Next in potential benefits

was the capability to access the CYBER 750 from DELNET.

Access to AFITNET, another local computer network, being

developed to process mnuch of AFIT's ever-increasing

workload, was regarded as equally beneficial once this

network is implemented. Software tool sharing was also

identified as beneficial while access to the ARPANET was

considered of lesser benefit. Distributed processing as

well as distributed databases received widely varying

evaluations. Those with a special interest in these areas

rated these capabilities as very beneficial while others

rated them of little use. There was a general concensus

that the primary benefits of these capabilities would be

pedagogical although one person felt that the importance of

distributed processing would increase rapidly in the next

few years. Because the network was not expected to support

critical functions, no need was perceived for the network to

guarantee uninterrupted service to the user through

redundancy and fault-tolerance. Fail-soft capability was

regarded as beneficial, however. The projected uses of

DELNET are summarized in Table 1.

User-oriented Functional Requi rements

The users' functional requirements were also clarified

by the survey. The throughput required by the users was

basically driven by the need to be able to transmit 16-32

Kbyte files between the computers on the network in less

than three minutes. Usage of the computers in the Digital

Engineering Laboratory should average about 3 to 4 hours per

day with peaks of up to almost 24 hours a day for a few days

at a time on some computers like the Data General Eclipse.

The computers with the heaviest projected usage in the

Table I

Projected Uses of DELNET

Projected Use Very Beneficial Somewhat Of Little Of No
Beneficial Beneficial Use Use

Peripheral

Sharing 7 0 0 0 0

File Transfers 5 2 0 0 0

Software
Tool Sharing 2 4 1 0 0

Access to
CYBER 750 3 3 1 0 0

Access to
AFITNET 3 4 0 0 0

Distributed
Processing 2 1 2 2 0

Distributed
Databases 2 0 2 3 0

i- -

Fault
Tolerance 0 1 1 3 2

Digital Engineering Laboratory are the Data General Nova,

the Data General Eclipse, the Digital Equipment Corporation

VAX-ll/780, the Digital Equipment Corporation LSI-lls, the

Intel Series II MDS, the Digital Equipment Corporation

PDP-lls, and the Microprogrammable Minicomputer Emulator

(MIME) that was built in the Digital Engineering

Laboratory.

The response time requirement was, of course, closely

tied to the throughput requirement. The requirement for

response times was addressed for three modes: interactive,

16

file transfers, and echoing user inputs. In the interactive

mode, two to three seconds for "simple" commands was

considered to be satisfactory. For file transfers, ten to

f if teen seconds was given by one user, although this is not

feasible on many of the Digital Engineering Laboratory

computers even when the user is in the local computer mode.

Thus, the file transfer response time was set at three

minutes for a 32 Kbyte file. This was considered an

acceptable tradeoff between user requirements and the file

accessing capabilities of the computers in the Digital

Engineering Laboratory. The echo response time requirement

was given as being a maximum of one-half second. This is to

insure that the echoes of the user inputs do not interfere

with their entering subsequent data at the keyboard. With

the exception of the ten to fifteen second file transfer

requirement, all other response time requirements seemed

consistent with the results of psychological studies

predicting satisfactory levels of performance for the

typical user (Ref. 13: 322,323) . Another requirement on

the response time was that the standard deviation for the

distribution of response times be less than half the mean

response time to the command. Thus, consistency in the

response times was also considered important.

In addressing the requirements of the user interface,

the key requirement that was mentioned by almost all users

was the need to make the network configuration and specific

operating systems of the hosts transparent to the user. The

17

.. ____ -- _.... . . .

difficulty of achieving this was also mentioned, however,

because of the difficulty in concealing operating system

idiosyncrasies. Other user interface requirements included

error recovery capabilities and the capability for the user

to get help from the network through a "teach" command. One

user also felt that the transparency should be optional so

that the user can access capabilities of the machines that

the network command language may not exploit.

Security was addressed from three perspectives. All

users indicated that they did not forsee the possibility of

running classified data on any of the computers in DEL.

Thus, the concensus was that the network did not need to be

designed to safeguard the processing of classified

information. The second aspect of security addressed the

requirement to protect files on the network from

unauthorized access or alteration. Two-thirds of the users

felt that this was a requirement while one-third saw no need

for this capability. One user also specified that this

access control should allow users to be given various levels

of access rights such as "read only". Thus, file access

restriction was found to be a security requirement for the

network. The third aspect of security was access control to

the network from outside DEL. Since gateways to the CYBER,

AFITNET, and possibly the ARPANET were envisioned, the need

for access control at these gate, -,s was evident.

Defining the availability of the network was the first

problem encountered in trying to assess the availability

18

requirement. The availability of DELNET was defined to be

the percentage of time that the network provided the

capabilities required by a particular user as compared to

the time that it was supposed to provide those

capabilities. This definition allowed the users to

individually assess their requirements for network

availability. The assessments ranged from 60 percent to

nearly 100 percent with 90 percent being the answer given by

almost half of the users. The time periods that the network

should be available were identified as either during the

duty hours of the Digital Engineering Laboratory technicians

or during the hours that the CYBER 750 is available. The

lower percentages were given by those who stated what they

felt would meet their needs, while the highest percentage

was given because the user felt that this should be fairly

easy to achieve. The 90 percent availability level met all

stated requirements of the users who were interviewed and

thus represents a reasonable target goal for the system

de s ig n. The user-oriented functional requirements are

summarized in Table 2.

Design-oriented FuIJnctinal Requirements

The design-oriented requirements included flexibility,

performance monitoring, and pedagogical requirements. The

flexibility requirement was addressed by asking the users to

describe how they would see the network changing over the

next five years. The response given by almost all was that

more hosts and devices would be added to the network. All

19

Table 2

User-oriented Functional Requirements

Not Marginally Applicable Very Essential
Area Applicable Applicable Applicable

Throughput 1 1 3 2 0

Response

User
Interface 0 0 1 3 3

Security 2 1 1 1 2

Availability 01132

the users felt that it was very important for DELNET to be

easily reconfigurable with respect to adding new hosts and

devices. Other changes mentioned included increased use of

the network by those outside the Digital Engineering

Laboratory and a transition of the network workload from

predominantly file transfers to more interactive bursty

traffic. Flexibility with respect to the topology,

protocols, and transmission medium were generally considered

requirements only from the pedagogical point of view. One

user also felt that it was important to be able to vary

between serial and parallel bit transmission.

The need for some form of performance monitoring

capability was expressed by all users. They felt that

statistics of the traffic through each node as well as

accounting data collection on user jobs were both important

20

to monitor. Both hardware and software monitor capabilities

were stated as requirements by two of the users and another

user suggested incorporating a performance monitoring node

into the network. Thus, although the capability to monitor

the performance of DELNET was considered important by all

users, the requirements for implementing this capability

varied siqnificantly.

The pedagogical functional requirements given by the

users are basically reflected in the requirements above for

flexibility and performance monitoring. Another pedagogical

requirement that was expressed was that DELNET should have

the capability to evaluate the use of fiber optic links in

computer networking.

Given the possibility of implementing a distributed

processing capability, the requirements for a distributed

processing language that would be available on all machines

were assessed. Pascal was mentioned by all users (one

specified UCSD Pascal) and Ada and FORTRAN were mentioned by

almost all. BASIC was mentioned by one user and one user

stressed the capabilities that Ada would have in distributed

processing due to its powerful control structures.

The users were also asked to rank each of the

functional requirement areas on a scale from not applicable

to essential. Flexibility received the highest overall

rating falling between very applicable and essential. The

user interface, the availability, performance monitoring

capability, and the pedagogical requirements were all rated

21

as very applicable. The response time requirements fell a

little lower between applicable and very applicable, while

the throughput requirement, security, and the requirement

for a distributed processing language were only considered

as applicable. The design-oriented functional requirements

Table 3

Design-oriented Functional Requirements

Not Marginally Applicable Very Esserltial

Area Applicable Applicable Applicable

Flexibility 0 0 0 4 3

Performance
Monitoring 0 1 0 4 2
Pedagogical 0 1 0 4 2

Distributed
Processing
Language 0 2 2 3 0

are summarized in Table 3.

othe Requirements

The third section of the user interview produced eight

additional requirements for the network. One requirement

was that the network have a general interface port where

student digital hardware design projects could be interfaced

to the network. Another request was that the

intercommunication between the hosts and the network be

interrupt-driven. The ability to find a file in the network

that had been sent from one host to another was also

22

mentioned as a requirement. One user felt that there was a

very great danger of letting the potential capabilities of

DELNET determine how it would be used rather than addressing

how DELNET could best fulfill the needs of the Digital

Engineering Laboratory. In particular, he felt that the

DELNET should not be used for general software development

but rather that this should be done on the CYBER 750. It

was pointed out by another user that the requirement to have

all hosts available on the network is probably only

applicable about one percent of the time when computer

networking research is being accomplished. Another user

felt that DELNET should be able to be easily initialized to

contain an arbitrary subset of the hosts available in the

network. The number of terminals and their locations was

another requirement that a user felt needed to be

addressed. Another user felt that the network should serve

as a testbed for the Universal Network Interface Device

(UNID) that is also being developed here at AFIT and should

be ready for testing shortly (Refs. 4,18). Finally, one

user stated that top-down decomposition and structured

analysis should be used in the design process.

Constraintg n DELNE

Another requirement of DELNET was that its cost of

implementation be less than $10,000 per year until 1983 when

an additional $30,000 will be available for the network.

The noise environment was also assessed. Although ±100

volt variations in the voltage levels from the building

23

power supply have been observed, the Digital Engineering

Laboratory has its own power supply that can be used. Also,

while noise contributions from all the computers and other

electronic devices in the Digital Engineering Laboratory

might be expected to be extensive, no problems attributable

to a noisy environment have been encountered using twisted

pair to link such computers as the LSI-lls.

The physical layout of the computers also had to be

addressed. The computers that are candidates for the DELNET

are all in the same building, on the same floor, and located

in four adjacent rooms. The maximum separation of any two

computers is about 125 feet. A floor plan showing the

locations of all minicomputers having semi-permanent

locations in the Digital Engineering Laboratory is included

in this paper as Appendix B.

Finally, the maintainability requirement of the network

had to be determined. In order to minimize the difficulties

involved in maintaining DELNET, all software must be

thoroughly documented and the hardware should be designed

for easy modular replacement. This will allow a faulty

module to be quickly replaced with a spare while it is being

repaired so that DELNET can continue to be available.

Through the results of the user survey it was possible

to s .'cify not only a comprehensive list of functional.

requirements but also to estimate their relative

importance. The ability to transfer files across the

24

network and to share peripherals attached to other hosts on

DELNET were the two most important uses and those that the

users wished to see implemented first. Flexibility was

considered the most important functional requirement; and

the user interface, availability, performance monitoring

capability, and the pedagogical requirements were also

considered very important. Finally, other constraints such

as development funds available, the physical location of the

hosts, and the noise environment were assessed. Appendix AI

contains a complete compilation of the user survey results.

25

PP---

III. DELNE System Requirements

Introduction

This chapter translates the general functional

requirements addressed by the last chapter into more

detailed system specifications. The first section of this

chapter addresses the system hardware requirements while the

second section specifies the system software requirements.

The principal hardware system requirements to be addressed

are the network topology, the host computers to be included

in the network, the selection of a suitable node for the

network, and a choice of aFpropriate transmission meciums

for the links on DELNET. The system software requirements

are specified using DeMarco's Structured Analysis technique

(Ref. 6). A very abbreviated description of the components

of the technique is given and its use is justified. Then,

Structured Analysis is used to specify the system software

requirements at the user level, the applications level, the

host-to-host level, the network protocol level, and the link

protocol level. Finally, the physical protocol

specifications are stated.

The requirements specification was actually an

iterative process. While some of the specifications found

in this chapter could be derived directly from the

functional requirements, many actually followed from design

decisions made in the following chapter. These requirements

would then trigger new design decisions which might in turn

26

modify the requirements specification further. What

follows, then, is the f inal results of this iterative

process.

Systm Harwar Requirements

The functional requirements of Chapter 2 can be used to

derive rather detailed specifications of the hardware that

is required. This is done in the following sections by

considering how the functional requirements of the system

place constraints on the system hardware. These constraints

are then used to derive the more detailed hardware

spec if~ication s.

T-Jpg qv The primary requirement for the topology

was that identified by Ravenscroft and mentioned earlier-

that the topology had to be flexible, and must lend itself

to easy expansion through the addition of more hosts and

nodes. However, the topology also must not have bottlenecks

that will limit the throughput on the network below the

required level or that will increase the response timr.e to

unacceptably high levels due to queueing delays. The

response time requirement may also impact the topology by

limiting the number of nodes between any two host computers

since the combined queueing delays may increase the response

time to an unacceptable level. Since availability was not a

major concern, the topology need not be overly redundant.

fl.Q.&I. The requirements for the host

computers to be included in DFLNET principally reflected

their usefulness from a pedagogical viewpoint, their

27

capabilities, and their peripherals. DELNET should allow

computers to be added to the network easily, regardless of

their sophistication. So, there was a requirement for both

a simple microcomputer and a sophisticated minicomputer to

be included in DELNET to demonstrate DELNET's capability to

interface with both. Also, since peripheral sharing was a

major projected use, those computers with the most powerful

peripherals should be included in DELNET Finally, the

usefulness of the network would be enhanced, if those

computers used most often in the Digital Engineering

Laboratory were included in DELNET.

Nodej. The requirements for the nodes in the network

also were addressed. Because DELNET is to be as transparent

to the users as is practical, it should not noticeably

degrade the performance of the host computers when they are

included in the network. Thus, the nodes must be capable of

handling lower-level network protocols. The nodes should

also be easily reconfigured to accomodate various topologies

and also must be capable of meeting the network throughput

requirements. Furthermore, the node should have the

capability of being easily reprogrammed for different

protocols and should be able to collect performance

monitoring statistics. Finally, if possible, a compiler

should be available for the CPU that the node is based on so

that the protocol software may be written in a higher order

language. This would reduce the magnitude of the

implementation effort and enhance the maintainability of the

28

software.

Trnsissionf iMeidium. There are several system

requirements for the transmission medium as well. First, it

must support the data transmission rates necessary to meet

the throughput and response time requirements. Second, it

must provide reliable communications links to avoid

degrading throughput and response times. Otherwise, if a

high percentage of blocks of data required retransmission

then both response time and throughput would suffer. The

same would be true if forward error correction was used and

a high degree of redundancy was required. On the other

hand, there is no requirement that the transmission medium

provide secure communications or provide high noise

immunity. The transmission medium should be easily

re-routed, however, to allow the topology to be easily

reconfigured. Finally, at least one link in DELNET should

make use of fiber-optic technology to satisfy the

pedagogical requirement stated in the user survey.

Structured Specification of the Protocol Reauirements

I _Qoduction. While the user surveys provided an

excellent tool for specifying the functional requirements

for DELNET, and even some of the more hardware-related

system requirements, a technique was needed to translate the

DEILNET functional requirements into system software

requirements. Several techniques were available for this

task including DeMarco's Structured Analysis (Pef. 6),

SofTech's Structured Analysis and Design Technique (SADT)

29

(Ref. 19), IBM's hierarchical input-process-output (HIPO)

diagrams (Ref. 15: 17,18), and various problem statement

languages (Ref. 2). Structured analysis was chosen as the

technique to be used to translate the functional

requirements into the system software requirements due to

several advantages that it offers. However, before these

advantages can be understood, it is necessary to understand

the basic components of the Structured Analysis technique.

Structured analysis is a technique using data flow

diagrams (DFD's) and a data dictionary which uses Structured

English, decision tables, and decision trees to describe the

DFD's. The DFD's have the four components shown in Figure

1. The first component is the data flow. It is a "pipeline"

of other data flows and of data elements. The data elements

are the basic data types that cannot be partitioned further

and still retain their meaning. A data element might be a

three-digit integer representing the length of a file in

bytes or a seven-letter word representing a command type.

30

II. . I I I I.i. . . I I l - ' ' "' " i . .

The data f low is represented by a curved arrow on the

DED's. The process converts input data flows to output data

flows and is the second component of the DFD's. It is

represented by a circle or bubble that contains the process

name. The boxes represent the third component of DFD's, the

sources and sinks of information. They may represent a user

keyboard, a user display, or any other mechanism by which

information enters or leaves the system. Finally, files are

the last component and are repositories of information

within the system. They are shown by straight lines. The

DFD's are layered starting with a context diagram that

defines the interface of the system with its environment.

Then the processes in the diagram are expanded into

lower-level DFD's. This partitioning process continues

until the data flows entering and leaving a process consist

of only one data 2lement each. At this point, a process

description is written for the process and the process is

not expanded into a lower-level diagram. The process

descriptions, data flow and data element descriptions, and

file descriptions for all the DFD's are compiled into the

data dictionary.

With the very abbreviated description of Structured

Analysis given above, it is now possible to examine eight of

the advantages that Structured Analysis offers. First, it

was based upon the concept of partitioning. This allowed

the complex network requirements to be addressed abstractly

at the user level where 'he context diagram could represent

31

the interface that the user wished to make to the s ystem.

Then lower level diagrams could be used to ref ine the data

f lows and processes in the higher level diagrams to

sufficient detail. Thus, this method of partitioning

allowed the large and complex DFLNET requirements problem to

be approached in an orde rly manner rather than causing the

analyst to be overwhelmed by the volume of requirements to

be specified. Second, through the use of a data dicticnary

and the concentration on data flows rather than processes,

Structured Analysis al lowed the interfaces to be more

clearly defined--in fact, it practically forced this to

occur . Third, the process definitions could be easily

specified using Structured English, a tool incorporated into

structured analysis. Fourth, the structured specification

consisting of the data flovi diagrams and data~ dictionary was

organized to eliminate redundancy in tho structured

specification. This made the task of maintaining the

specification and changing it much easier. Fifth, the data

flow diagrams were a two-dimensional presentation of the

requirements and thus presented the structure of the DELNET

requirements much clearer than the linear, voluminous

presentation of a traditional specification. Sixth,

Structured Analysis differentiated between the logical and

the physical environment, thus more clearly defining the

problem. This was also very helpful since this allowed the

functional software requirements to be specified without

being concerned about the actual hardware that would execute

32

op * 1

those requirements. Seventh, when a data flow diagram was

wrong, it was usually glaringly wrong, and thus it was

easier to spot inconsistencies and gaps in the structured

specification and to correct the deficiencies. Finally, it

was fairly easy to transition from the structured

specification to the design phase since the data flow

diagrams gave a first cut at the module structure charts

(for Yourdon and Constantine's structured design technique)

using Source/Transform/Sink analysis (Refs. 6,22). The

major disadvantage was that it was very time consuming to

generate the structured specification. However, the extra

time spent in the requirements definition was probably more

than recompensed by the time saved in the design phase and

the benefits of having less requirements errors.

Contex±t Digr The context data flow diagram shows

the system boundary and interface with the user. As can be

seen in Figure 2, the network operating system (NOS) must

include everything between the user input from a keyboard

that is connected to a computer in the network, to the

response that the user receives at his display. Thus, the

NOS includes all the computer operating systems in the

network as well as all interface software and hardware

required to implement the network functional requirements.

To initialize the network, a configuration bootstrap process

is also required. Tn addition, Table 4 shows the layers of

protocol that are defined in the sets of DFDs that follow.

Table 5 describes the process hierarchy for the first set of

33

Tabl e 4

Sof Protocol

Network Operating System

Host-to-Host Protocol (X.25 Level 3)
Network Protocol (Routing Algorithm)

Link Protocol (X.25 Level 2)
Physical Protocol (RS-23 2C)

DFDs, the Network Operating System.

ysten 2Dt. The system diagram translates the key

functional requirements into the software requirements for

the NOS as shown in Figure 3. First, the user command must

be examined to determine whether it is a network command or

a local command (1). If it is a network command, then it

must be sent to the computer with the software to interpret

the network command (2). The transmitted network command

must then be classified as either a command to transfer a

34

Table 5

NetworLk OperatJ19 .Sys&i Process Hie&rarch2

1. Determine Command Type

2. Send Command to [lost with NOS

3. Determine Network Command Type

4. Transfer File
4.1 Send Get-File Command to File Source Host
4.2 Get File from Source Device
4.1 Restructure File for Network
4.4 Transmit File to Destination

4.4.1 Divide File into Blocks
4.4.2 Transmit Block
4.4.3 Reassemble Blocks

4.5 Restructure File for Dest Host
4.6 Store File on Dest Device

5. Control Session
5.1 Determine Session Control Command Type
5.2 Log User Into Network
5.3 Log User Out of Network

6. Help User
6.1 Determine Help Info Requested
6.2 Provide General Network Introduction
6.3 Provide Procedure for Transferring Files
6.4 Provide List of Active Hosts and Devices
6.5 Provide Procedure for Logging Out of Network

7. Send Message to User's Host

8. Route Local Command

9. Execute Routed Local Command

10. Route Local Response

file from one device on the network to another device, a

command to log into or log out of the network, or a request

for help in using the network (3) . First, if the request is

to transfer a file, then the NOS must check the network

configuration to insure that the c~ommand is valid. Then the

35

oill

i

36

NOS must attempt to transfer the file and a file transfer

message must be output and also entered into the f ile

transfer log (4) .Second, if the transmitted network

command is to log into or log out of the network, then a log

in or log out message must be output and the command routing

table must be updated. The file transfer log and the

network configuration file must both be accessed by the

process (5) . Third, if the transmitted network command is a

help request, then the appropriate help information must be

output to the user. Depending upon the type of help

request, this process may require access to the network

configuration file (6) . Finally, the response that has been

output from one of the three processes must be transmitted

back to the user as the network response (7).

If the user command was a local command, then the

command must be routed to the computer that the user

specified in his log in command to DELNET. Since this does

not have to be the host to which the user terminal is

physically attached, the command routing table must be

accessed to determine this routing (8). At the host to

which the user is local, the command must be executed and a

local response must be generated (9). Finally, this local

response must be routed to the user (10). In processes 3,

4, 5, 6, and 9 there is also the possibility for commands to

be invalid, and thus, error messages must be generated in

place of the expected response.

Ei~i ~n.Lex in~t~. The transfer file

37

process was specified in more detail by the lower level DFD

shown in Figure 4. At this level, the transmitted file

transfer command must be parsed and the file transfer

command parameters must be used to generate a get-file

command that must be sent to the host that has the file to

be transferred (4.1). The source host must then retrieve

the file from the device that it is stored on and must

restructure the file to a standard network file structure

(4.2,4.3). Then the file must be transmitted to its

destination using information also from the get-file command

(4.4). Checkpointing must be used to transmit the file to

insure that the entire file does not have to be

retransmitted if an error should occur, but rather only the

last portion to be transmitted. This is necessary to insure

adequate throughput and response time. This checkpointing

mechanism is shown in Figure 5. The file is broken into

blocks which are individually transmitted (4.4.1,4.4.2).

Thus, only those blocks not yet received correctly need to

be transmitted when a file transmission error occurs. At

the destination host, the file must be restructured for that

host (4.5). Finally, the file must be stored on the

destination device and the file transfer message output and

entered into the file transfer log (4.6). There must be

error messages generated if the file cannot be retrieved

from the source device or if the destination device cannot

store the file.

zgzasiQn _Cntrol Re.hients. The control session

38

r,,

to to

39

c~l 9

. . . .' ' ' • . . . = ".. . " " -- am i u , - - , ,0

ttedBlocks

Figure 5 T ianmit File (4.4) EFM

process may also be specified further and its lower level

NeCr nifigmtion

Lc Uer in Msferl

Figure 6 C iA Session (5.0) Ne

DFD is shown in Figure 6. The transmitted session control

command must be classified as either a log in command or a

log out command (5.1). If it is a log in command, then the

command must be validated by accessing the network

configuration file to insure that the host exists in

DELNET. Then a log in message must be output and the

command routing table must be updated to show the local host

40

for that user (5.2). If the transmitted session control

command is a log out command, then the command routing table

must be reset to the host to which the user is physically

attached and a log out message output to the user display

(5.3).

e Oe Reuremnjs. Finally, the help user

process may be specified further by the lower level DFD

Ceneramau Selection

Provide FileThansferrocedure
Fire 7 tkiUr (60)ur f

clasified as eiter aFinrleifrainseusafl

toed uest , aList of
a vtive

lsnt
\LE; Netio iuraik

li st of
Active list of Actve
Hots Hos ts--ri Dmac-s

Sesicn Ci 1o Ino Proid

naeseeut SessinControlfo

Fzr7 Help Usfr (6.0) TRD

shown in Figure 7V. The transmitted help request must be

classified as either a general information request, a file

transfer procedure request, a list of active host and device

names request, or a session control information request

(6.1). If it is a general information request, then a menu

41

selection consisting of the available commands and their

formats must be output along with the formats for the more

specific help requests (6.2). If the transmitted help

request is a file transfer procedure request, then the

format for the transfer file command must be output (6.3)

If the transmitted help request is a list of active hosts

and device names request, then this list must be output by

accessing the network configuration file (6.4). Finally, if

the transmitted help request is a session control

information request, then the information on the session

control commands must be output (6.5).

Ho s-t- 11os_ Pr.QtQcol Requireme-n-t. The previous

protocol requirements were specified to implement the

applications of remotely logging into a computer and

transferring files. These as well as the user help protocol

rely upon a host-to-host transfer mechanism which was

treated as a primitive by these processes. If the DFD

partitioning process had been followed as specified by

DeMarco, then the partitioning of the host-to-host transfer

mechanism woul6 have been duplicated several times.

However, by defining the host-to-host transfer mechanism as

a priinitive that is used by several processes, it was

possible to start a new set of DFDs for this mechanism

without having to duplicate them for each process. Table 6

shows the overall process hierarchy for this Pet of DFDs.

The context diagram for the host-to-host protocol is

shown in Figure 8. Obviously, the most important function of

42

F C-e Lit C Cal I ino Post Protocol

1 .? Pl ace Cbannel in Data Trainsfer 7tate,
I. Window CallIinq llost to Cal led P~oi7t Pat- c P- cke.t
1 .4 Send Packet to Calling Node
I . Determine Callinq Node to Cal lino o lack tr~vp

1 .6 Det ermine Dat a Packet Catc eqory and Fxl racit rile., (Thr t- r (I
1 .7 Buffer Packet Sequence
1 .8 Asse mhl r Packet FeOucnce(
1.9 (onif i r Fecei t of ITnterrupt Packt-
1 .1 0 Sendl Data- to al I1 i nq H os t

2. xecuLte(Cal 1i nq Node Protocol
2.1I E XeCuCLteCC a TI in q P'ost Packet

2 .1 .] Determine Callinq Host Packet 'TvpV:
2.1 .2 Not 1 fy Cal 1led N7one of I ncor irq Cal I
2 .1 .3 Update Cal linq rNode Vindowivq Va rial 1-!-
2.1 .4 Confirm Roceipt of Calling Plos-t Irtrriilt
.1. Con f "rm CallIinq Pos-t Clecar Pac ket

2.1 .6 Con f IYri Cal Ii nq Hlost Rer et Packet
.2 .1 .7 Con f irm CallIi ng Hlost Res ta rt Packe.t
2 SendPacket onto N'etwork
23 Execute Rout ed Cal led Node Packet

2.3.1 Determine Called Node Packet Typc
2 .3 .2 Interrupt Callino Node. to Cal ling Por t Pal a Flrw
2.3 .3 Notify Cal linq Post of Call Connecti en
.3. 4 W-ind(ow Cal led Pos-t to Cal ling Pou t Pat Yake t u

2.4 Send Packet to Call ing Plo.t
2.1)9 Recover from.) Procedur e Friror

>Route Packets
4. Execute Cal led Node Protocol

4 .1 E 'xecuLte Called Post Packet
4.1 .1 Dtermine, Cal led Plost Packet Type(
4.1 .? Relay Call Acceptance to Callinq INo-de
4.1 .3 Update Cal led NIode Vindowing N.ariahles
4.1 .4 Confirm Receipt of Cal led Post Int rrupt
4.1 .9' Con f irm Ca I Ic , Post Clear Reques!t
4.1 .6 Confirm Called Post Rese(t Peg uest
4.1 .7 Confirm Called Post Restart FC'equert

4.2 Send Packet on-o Network
4.3 FXcuLte Routed Cal ling Node Packet

4 .3 .1 Determine Calling Node Packet Tvp
4 .3 .2 Interrupt Called Nodle to Called Post Pata- Flc,%,
4 .1 . Not if y C'al led Post of Incominq Call1
4.3 .4 Wircdow Cal linq Post to Cal led Plost Data, Tar k(t-

4. 4 Send Packet to Called Plost
4.1) Rocover from~ PrOCedure rro-r
Fx'cuLte' Cal led Pos~t Protocol
~. I iid Data into Packets7

5.?2 Kee p Channel in Data Transfer rta--te
r9.3 ;Winelow Cl l 1ed P1os t t o Ca Ii ng 1 Pos t Pa t a, Pc ket

.4 Send Packet to Cal led N'ode
9, Dot e rn i ne Cal 1 ccl Nodew t o Cal Iled Plost Paxcet 'l(

.6 Pet c mi no r)at o P-acke t Ca t eg.(or .-r(a F Ext ract I'l 6w (>r t I
r 7 Buf fer Packet .Seouenice

P Ass-entl(I Pc ket ',qecr
()Q Cori f i rm Pei t of 'I nti or rupt Pa)cke t

.10 Se(,nd(Da t a- t o P Ia li P Iost

9 a PE Ita Tana tn a mtte D 119

FjRe 8 Host-wo-Wt Cantet Diag

this protocol is to transmit data from the source host to

the destination host. However, to accomplish this function

reliably, there must be acknowledgement of the transferred

data as well as error recovery procedures. Furthermore,

that protocol must be transparent to the data since the data

may be in ASCII, EBCDIC, or binary form. Since both long

files and short network commands will be transmitted over

the network; unless special precautions are taken, a long

file transfer could easily degrade the response time of a

network command to an unacceptable level. Thus, either file

transfers must be able to be interrupted to allow network

commands to be transmitted or separate mechanisms must be

used for file transmission and network command

transmission. The second option would require twice as many

resources as the first alternative and so is not an

acceptable alternative if the requirements can be met using

the first option. The first option requires that the

transmission medium be shared. Time division multiplexing

(TDM) or frequency division multiplexing (FDM) could provide

multiple paths between any two hosts as could many

topologies. However, since the throughput requirement is

much lower than the channel capacity between hosts on

44

DELNET, FDM was not a cost-effective way to meet the

response time requirement. Also, restricting the topology

to one having multiple paths between hosts conflicted with

the flexibility requirement. Thus some form of TDM was

needed. Packet-switching enables the communications path

between two hosts to be shared by creating logical channels

on the path. Each channel is limited to using the

communications path only up to the time required to transmit

a maximum-length packet. This prevents the network commands

from being blocked by large file transfers and thus allows

the response time requirement to be met.

Thus, a packet-switching protocol was required for

DELNET. Due to time constraints on the development of

DELNET, this protocol should be one that is a standard and

thus, already specified. The alternatives for this protocol

included the ARPANET protocol, IBM's SNA, and the X.25

protocol. Because the ARPANET protocol was the first

packet-switching protocol, it does not employ the protocol

advances such as the newer bit-oriented protocols for

control of the links. IBM's SNA was not designed for

heterogeneous computer networks and thus, is not appropriate

for DELNET. For these reasons and also because of its

versatility and endorsement by the International

Consultative Committee on Telephones and Telegraphs (CCITT),

the X.25 protocol was chosen for DELNET (Ref. 9: 243-284).

rie he X.25 Protocol. The X.25 protocol was

developed to provide a transport mechanism for data access

45

across a packet-switched network. It includes the three

basic facilities of error control, flow control, and

synchronization. There are three levels or layers within

the X.25 protocol. Level I defines the physical protocol

requirements and the link protocol is defined by level 2.

The interface between hosts on the network with their entry

nodes is specified by level 3 of the protocol. The software

requirements for this protocol were then developed using a

top-down approach by considering levels 3, 2, and 1 in that

order.

Z.25 L l 3 Reauirements. The transmit data process

shown in Figure 8 must be slightly modified for the X.25

protocol. This is because the X.25 protocol establishes

virtual circuits and virtual calls between the hosts on the

network and then allows a two-way exchange of data between

the hosts. Thus, a more accurate context diagram of the

Calling Host to Traru itted Callirr,alled HwtM lt bstm w alled lost

_i TCalled
lost Data

Tranwitted Called
l --- FOt tW CaM19 - Waled Hwt to LM-=..-- =------ st--ta Cal irK Ib 11ia

Figte 9 X.25 I.el 3 Gcntact Digam

X.25 protocol is shown in Figure 9. The exchange data

46

process is expressed in more detail by the X.25 Level 3

Overview DFD shown in Figure 10. To make the diagrams more

readable, the terms "data terminal equipment" (DTE) and

"data communications equipment" (DCE) used in the CCITT

specification have been replaced by the terms "host" and

"node" respectively. Processes 1, 2, 4, and 5 in Figure 10

are performed directly by the level 3 protocol while Process

3 uses a routing algorithm and the level 2 protocol to

perform its function.

.Ex te -U.lin.a RQ f2 otDpQ1 l11 Process. The

lower-level DFD of the Execute Calling Host Protocol (1)

process is shown in Figure 11. The data to be sent from the

calling host must be divided into 128-byte packets (1.1).

These packets must then be queued to be transmitted to the

called host over the X.25 channel. If a virtual circuit

exists between the calling and called hosts, then the X.25

channel that the circuit is on must be placed in the data

transfer state by issuing a reset request packet and waiting

for receipt of a reset confirmation packet from the calling

node. If no channel has been allocated as a virtual circuit

between the two hosts, then a virtual call must be made.

The calling host must send a call request packet to the

calling node. Then upon receipt of a call connected packet

from the calling node, the virtual call has been made and

the X.25 channel over which the call was made is in the data

transfer state.

To clear a virtual call when all the data from the

47

Ail

CAC

48

S;E

cCCe

t ~-.

MAI

49

called host to the calling host has been transmitted, the

calling host must send a clear request to the calling node.

The call must be cleared and the channel made available when

the calling host receives a clear confirmation packet from

the calling node.

If a local procedure error occurs, the virtual calls

and virtual circuits must be reset as necessary to recover

from the error. The calling host must send a reset request

packet to the calling node for each logical channel to be

reset. The channels will be reset upon receipt of a reset

confirmation packet from the calling node. if the entire

calling-host-to-calling-node interface is to be

reinitialized with all virtual calls being cleared and all

virtual circuits being reinitialized, then the calling host

must send a restart request packet to the calling node. The

interface must then be reinitialized upon receipt of a

restart confirmation packet.

The state of the channel must also be able to affected

by the calling node. If the calling host is waiting to

receive a call connected packet from the calling node and

instead receives a clear indication packet from the calling

node, then the calling host must send a clear confirmation

packet back to the calling node and must clear the pending

call request. Also, if the calling host receives a reset

indication packet from the calling node, then the calling

host must reset the appropriate channel and send a reset

confirmation packet back to the calling node. Finally, the

so

calling host must clear all virtual calls and reset all

virtual circuits upon receipt of a restart indication packet

and must respond with a restart confirmation packet back to

the calling node (1.2).

There must be the capability from the calling host to

control the flow of data packets to the calling node as well

as the capability to interrupt this flow control with data

interrupt packets. This must be accomplished by the Window

Calling Host to Called Host Data Packet (1.3) process and

the Send Packet to Calling Node (1.4) process. A windowing

mechanism must be implemented using the Packet Send Variable

(P(S)) and the Packet Receive Variable (P(R)) which must

allow up to W data packets that were transmitted to the

calling node to be pending acknowledgement at any time. W

is the window size. The packets must be numbered

sequentially modulo 8 and the lower window edge (last packet

acknowledged by the calling node) must be updated. This

must be done using supervisory packets from the calling node

as well as the flow control acknowledgement field in the

transmitted called host to calling host data packets (1.3).

The windowed calling host data packets must also carry an

acknowledgement in its flow control acknowledgement field of

the last called host to calling host data packet received by

the calling host. Since the host interrupt packets to the

calling node are not windowed, they must be acknowledged by

an interrupt confirmation packet from the calling node

(1.4).

51

The calling host protocol must also accept data packets

f rom the called host that are relayed by the calling node.

TheLe packets may be either data interrupt packets from the

called host or they may be data packets that were windowed

by the calling node protocol (1.5) . The data interrupt

packets must be confirmed as already rentioneu by

transmitting an interrupt confirmation packet back to the

calling node. Also, the interrupt data must be extracted

from the packet and sent to the calling host (1.9,1.20).

The windowed data packets from the calling node must be

reassembled into the packet sequences that comprised the

original data from the called host. These packet sequences

must be assembled by first buffering all packets which

indicate that more packets follow in the sequence (category

2 packets) until a packet arrives that indicates that it is

the last packet in the sequence (category 1 packet). This

category 1 packet must then trigger the release of the

complete packet sequence (1.6,1.7,1.8). Finally, this

called host to calling host complete packet sequence must be

sent to the calling host (1.10)

Execute Caling INq~d Prooco Proces Process 2 can

also be expanded into a lower-level r)FD and its DED is shown

in Figure 12. The level 3 packets f rom the calling host

must be executed and must result in packets being sent out

on the network to be routed to the called node as well as

resulting in packets being sent back to the calling host

(2.1,2.2). Flow control information from the calling host

52

-zl Call N

Figtr 12 Et- Ca -- r (T
level pac uall nod--

wnowing Svie2

herouted called Node p s u st Cal cut on] .d to

calling host supervisory akets mst b sdfrfo

lvlr 3- Packets utb sdt paeteclignd

bTed Called c ae noepces Selon eedcte

N od e ey utsltPacpcet big e t t h aln

control (2.3). Finally, there must be a process to recover

53

from a local procedure error that might occur in one of the

other processes. This recovery must be initiated by either

a reset indication packet or a restart indication packet

sent from the calling node to the calling host (2.5).

An expansion of the execute calling host packet into a

lower-level DFD is shown in Figure 13. The calling host

level 3 packet must first be classified as one of the types

of packets shown in the DFD (2.1.3). If a call request

packet is received, then an incoming call packet must be

generated (2.1.2). If the received packet is a calling host

to called host data packet, then its flow control

acknowledgements must be used to update the calling node

windowing variables (2.1.3). Both the incoming call packet

and the calling host to called host data packet as well as a

calling host interrupt packet that is received must be sent

out on the network. The interrupt packet must, in addition,

be confirmed by an interrupt confirmation packet from the

calling node (2.1.4). If a clear request is received, then

it must be confirmed by a clear confimation packet from the

calling node (2.1.5). A node reset confirmation packet must

be generated if a reset request is received and the channel

must be reset at the calling node (2.1.6). likewiEe,

receipt of a restart request packet must result in the

reinitialization of the calling-node-to-callinq-ho:t

interface and the reinitialization must be confirmed with a

restart confirmation packet (2.1 .7). All of these

confirmation packets must be sent back to the calling host

54

2.1.2 IrnarigchallPacket

Calld a
Ofcall

2.1.43~~~a~Rc~

Q - G-nffrn Cnn~~

RFdrt a,*i~t~_hcz

13w- 3FPaiate Calie kt am 2.)

and togetherl, lthycntutthcalnnoeofimin

packet datace flpw shwninFgue 2.AcofimaLn acc

55r215 Calr ,kxeCe-

from the calling host on an action initiated by the calling

node must be an input to the Recover From Procedure Error

(1.5) process. This is shown in Figure 12 by the calling

host confirmation packet data flow. Finally, a calling host

supervisory packet must be an input to the Execute Pouted

Called Node Packet (1.3) process in Figure 12.

The process that executes routed packets from the

called node is specified in more detail through the

lower-level DFD in Figure 14. A routed packet from the

1t4 Called 2.3.1 P t(),)No de Vk k t - tecane

Cale 14d I ae Clled 2.3.3 Gall~ Ca2.3)e rad

called floe must first be classified a either a node

interrupt packet, a call accepted packet, or C called host

Cale ;t7

to calling host data packet (2.3.1). If it is not one of

these, then it must be considered an invalid packet and

discarded. A called node interrupt packet that is received

must interrupt the flow of data from the calling node to the

calling host. Then, the data contained in the interrupt

packet must be sent to the calling host in another interrupt

packet from the calling node (2.3.2). If the routed called

node packet is a call accepted packet, then the calling host

must be notified of the virtual call connection by sending

it a call connected packet (2.3.3). A called host to

calling host data packet must be windowed and sent to the

calling host. The windowing is accomplished by using the

Receive Ready (RR) and Receive Not Peady (RNR) supervisory

packets from the calling host and the calling node windowing

variables. These are used to send both windowed called host

to calling host data packets as well as calling node

supervisory packets to the calling host (2.3.4).

Fx_"cte _UJJgld Ngo& Pro_Qco. Process. The Execute

Called Node Protocol (4) process shown in Figure 10 is very

similar to the execute calling node protocol process. The

lower-level DFD's for this process are shown in Figures 15,

16 , and 17 . As can he seen from these DFD's, the

requirements for the Execute Called Node Protocol (4)

process are almost identical to those for the ExecutE

Calling Node Protocol (2) process. The major difference is

in the handling of the virtual call setup. The called node

must relay the incoming call packet to the called host arid

57

Cal led Il

Cale H Cafd at

Figre 15 -ute CalledI Ixk PrtClol (4) NAt

then must relay the call accepted packet from the called

host to the calling node (41.2,4.3.3)

Execute qalied Hs_ Protocol Pross. As with the

Execute Called Node Protocol (4) process, the Execute Called

Host Protocol (5) process also has an almost identical

counterpart. As can be seen from the lower-level DFD of the

Execute Called Host Protocol (5) shown in Figure 18, the

58

4.1.2
Relay Ciall
Ao%,t04 14

Ncde

A

4.1.3

cc

1%1=irbfes

,4,NO 4 9

Imolid
PhdetL

4.1.4
zim Called Ibde lr

Ccnf iEcti- cket
Pt Of OrLyjtL

Called Best

Galled FIc6t IrIterrupt
level 7 PacFet 4.1.1

4-temdme
Called Host
Pad;et Type

IVd

t PCs t 4. Called NoclpClear
Ccrfi=-tim pa t

Call Host
Clear

t
1 .91

4.1 6 Called N3de Reset
CU if ivr, PadiTt

Called Pcst
Reset

Request

Galled NodL, Restart
4.1.7 GJ-ff 'IF,-Iticii- Packt7

Ccnf im
Called flost

Restart
Request

Irm 16 F m-itc, Gilled Host Rackt (4.1) EM

59

,CAlled Nod

Caalle Cldo

Padet 01
_t CaledHt

Figre 17 PEamte Rxzt Calling Node Padlt (4.3) 11D

principal difference is again in handling the virtual call.

The Execute Called Host Protocol (5) must accept a virtual

call by sending a call accepted packet to the called node

andi it cannot by definition generate a call request (5.2)

New ~ok Proti.QJ R m iiemen . As with the

host-to-host transfer mechanism, the network transfer

mechanism is used by several processes and is treated as a

primitive in the host-to-host protocol. It is also

60

6j

ItsI

3 C.

$ *~'zI 'V

-~ ~,61

specified by a set of DFD's starting with the context

Source Nod Tinsntted Source_
1g1 T edt Nod lee__ ad

iguire 19. Nemork Protocol Cctntc Diagran

diagram shown in Figure 19.

The network protocol, then, must transmit packets from

their source node to their destination node. As can be seen

from the Network Protocol Overview DFD in Figure 20, there

Tninsitted Packet

Sourcec~ Soirc
IEWIacke

-aE

PineZ~~ktheor ProAco I0wcrviiv to

Clsr62 b-stRco

are actually two processes required to accomplish the

network protocol. First, the packet must be routed to a

closer node using a lookup table unless it has reached its

destination node (1). If it is not at the destination node,

then the in-transit packet must be sent to the closer node

to which it has been routed (2) . Thus, both a routing

algorithm to implement the first process and a link transfer

mechanism to implement the second process are required for

the network protocol.

_uting Algorith ee Given a simple

network topology, the routing algorithm may also be very

simple. There is only a requirement for a look u17 table ir

each node that is initialized when the network is booted.

Since the availability requirement was only 90 percent,

there is no need to make the routing algorithm adatlve;

however error messages must be given to the user if a hort

active on the network cannot be reached. If a more coriplex

topology is used, then a distributed adaptive routino

algorithm should be implemented as recorrrended by

Ravenscroft (Ref. 16).

Link Proto BuIeens. The X.25 protocol

requires that the High Level Data Link Control (HDIC) be

used for the level 2 or link protocol. The overview DFD for

this protocol is shown in Figure 21. Also, Table 7 shows

the process hierarchy for this set of DFDs. This protocol

must specify the mechanism by which information is exchanged

between adjacent nodes in the network. The Fxecute NDIC

63

Jfl 14')

Aft

64

Table 7
Link Protocol Process Hierarchy

1. Execute HDLC Protocol at Primary Node
1.1 Extract Valid Packet

1.1.1 Extract Information Between Flags
1.1.2 Unstuff Zeros
1.1.3 Check Lenqth
1.1.4 Generate CRC Remainder
1.1.5 Check FCS Block

1.2 Decode Secondary Address and Control Fields
1.3 Execute Secondary I-Frame Packet

1.3.1 Validate I-Frame Packet
1.3.2 Parse I-Frame
1.3.3 Parse I-Frame Control Field

1.4 Execute S-Frame Response
1.4.1 Parse S-Frame Response Control Field
1.4,2 Decode Response Supervisory Bits
1.4.3 Send Ready Status and Extract N(R)
1.4.4 Send Busy Status and Extract N(R)
1.4.5 Send Reject Condition and Extract N(R)

1.5 Execute U-Frame Response
1.5.1 Parse U-Frame Response Control Field
1.5.2 Decode Response Modifier Bits
1.5.3 Set Up Lin
1.5.4 Execute Pending State Change

1.6 Window Primary Information Blocks
1.6.1 Reset VS)
1.6.2 Update Lower Window Edqe
1.6.3 Poll Secondary for Ready State
1.6.4 Place I-Frame in X.25 Link
1.6.5 Select Packet for X.25 Link

1.7 Recover from Procedure Error
1 Sen Picket

2. Transmit Bit Streams
3. Execute HDLC Protocol at Secondary Node

3.1 Extract Valid Packet
3.2 Decode Primary Address and Control Fields
3.3 Execute Primary I-Frame

3.3.1 Validate I-Frame Packet
3.3.2 Parse I-Frame
3.3.3 Parse I-Frame Control Field

3.4 Execute S-Frame Command
3.4.1 Parse S-Frame Command
3.4.2 Parse S-Frame Control Field
3.4.3 Send Ready Status and Fxtract N(R)
3.4.4 Send Busy Status and Extract N(R)
3.4.5 Send Reject Condition and Extract N(R)

3.5 Execute U-Frame Command
3.5.1 Parse U-Frame Command Control Field
3.5.2 Decode Command Modifier Bits
3.5.3 Disconnect Link
3.5.4 Set Up Link

3.6 Window Secondary Information Blocks
3.6.1 Reset V(ST
3.6.2 Update Lower Window Edge
3.6.3 Set Response Final Bit
3.6.4 Place I-Frame in X.25 Link
3.6.5 Select Packet for X.25 Link
3.6.6 Respond to Status Request

3.7 Request Recovery from Procedure Error
3:8 Send Packet

65

Protocol at Primary Node (1) process and the Execute HDLC

Protocol at Secondary Node (3) process differ in that the

former node must have the responsibility for resetting the

channel as well as polling the status of the latter node.

However, other than these additional responsibilities, the

processes are very similar. The Transmit Bit Streams (2)

process is performed by the physical protocol and the

transmission medium and so its requirements are analyzed in

a later section. First, the Execute HDLC Protocol at

Primary Node (1) will be analyzed.

ExeQut-e HDLC ProQtcQj at Primary Node. An expanded

DFD of this process is shown in Figure 22. There must be an

incoming bit stream from the secondary node and an outgoing

bit stream to that node since HDLC is a bit-oriented

protocol. This satisfies the transparency requirement that

was specified to allow the transfer of binary files. The

node must supply level 3 packets to the Execute HDLC

Protocol at Primary Node (1) process through the routing

algorithm and the interface with the host-to-host protocol.

This process views the level 3 packets strictly as

information blocks to be transmitted and thus the coupling

between level 2 and level 3 is minimized. This allows the

protocol flexibility requirement specified in Chapter TI to

be met much more easily. Also, transmitted information

blocks from the secondary node must be able to be extracted

from the incoming bit stream and supplied to the routing

algorithm and host-to-host transfer mechanism.

66

z: 4~

67

The incoming bit stream must be monitored by the

Extract Valid Packet (1.1) process and valid level 2 packets

extracted from the stream. These level 2 packets must then

be classified by their address and control fields as either

information (I-frame) packets, supervisory (S-frame)

response packets, or unnumbered (U-frame) response packets.

The transmitted information block must be extracted from the

I-frame packet and the packet sequence information in each

of the types of packets must be provided to the windowing

process (1.3). A windowing mechanism very similar to that

used in the level 3 protocol must be used by the Execute

HDLC Protocol at Primary Node (1) process to achieve flow

control over the link. The Window Primary Information

Blocks (1.6) process must use the packet sequence

information V(S) to insure that no more than k blocks are

pending acknowledgement at any time where k is the window

size. The windowed information blocks as well as the

command and response packet replies must be assembled into

level 2 packets to be sent to the secondary node. Local

procedure errors due to invalid length packets, invalid

packet types, and out of sequence I-frames must be recovered

from by generating a set asynchronous balanced mode (SABM)

command. This command initiates the resetting of the link

in both directions (1.7). Finally, the level 2 packet must

be sent out of the node in the outgoing bit stream by

inserting the packet between two flag characters (.8).

Extrac Valid Packe. The Extract Valid Packet (1.1)

68

process is expanded into a lower-level DFD in Figure 23.

The incoming bit stream must first be monitored for the flag

sequence of bits that signifies the start or end of a

packet. Once this sequence is detected, all information

between it and the next flag must be extracted and passed as

a level 2 packet to the Unstuff Zeros (1.1.2) process.

However, if an abort sequence of seven contiguous ones is

detected or an idle channel state is indicated by fifteen

contiguous ones, then the packet being extracted must be

discarded (1.1.1). The Unstuff Zeros (1.1.2) process must

remove zero bits that were stuffed in the packet to prevent

the bit patterns in the packet from appearing as the flag

sequence. The unstuffed packet must be checked for valid

length and packets of invalid length must also be discarded

(1.1.3). Finally, the valid length packet must be checked

for bit errors by regenerating the cyclic redundancy check

(CRC) remainder and comparing it to the frame checking

sequence (FCS) in the packet. If they match, then the

packet must be valid. Otherwise, the packet must be

discarded (1.1.4,1.3.5) .

_x~gcute I-Frame Packet. As shown in the lower-level

DFD for this process in Figure 24, the I-frame packet must

first be validated by comparing the next packet expected

number N(R) of the I-frame to the primary receive state

variable V(R). If they do not match then the I-frame must

be considered invalid (1.3.1). Otherwise, the valid I-frame

packet must be parsed and the control field separated from

69

L os.-- l". ..

I

U
J~J

0

70

I I I Im e nf
Se•ar SecorL--v] Frm , r

I-Frzm-eatro -Fald_. , alz S 'Ur

1.3. 1..3.3

Tilivit trs~xcl

PTacke 3t.d7t "

WRw 24 E ate Se I-?rir Icd t (1.3) hIl

the transmitted information block (1.3.2). The control

field must then be parsed further to extract N(R) and the

packet sequence number N(S). The transmitted information

~block must be provided to the node as a level 3 packet and

N(P) and N(S) must be used] to provide packet sequ~ence

information to the windowing mechanism (1.3.3).

Excute S-Fram Respnse. The Execute S-Frape

Response (1.4) process lower-level DFD is shown in Figure

25. The S-frame must first be parsecd to extract the

response supervisory function bits and the final bit

(1.4.1). If the final bit is set, then the response must be

interpreted as the reply to the last command sent out by the

process with the poll bit set. The supervisory mc.fier

bits must be classified as either a Receive Ready (eR)

response, a Receive Not Feady (FPN) response, or o Reject

25.TheS-famemus fist e prse toextactth

~~ictitRead BiL-dY~ i1catiacn

(REJ resons (1..2).If he Sfram repons is4n.3

respnsethe theread inicaton mstRead Stsetoth

Also, the NCR) o te R epnems eue oudt

expnectdfo h eodr node. If4. thqe~e Sfaersos

is an repne1he-h0uysttsms e ett h

rejec excetion onditon (14.5)
E~t~ l-Fi~ ~ he ExcuteU-Frme

Response~~~~~ (1.5 prcs can als be exLdd ut a hn-

72rr- ii itRJC

in Figure 26. The U-frame response, like the S-frame

Figare 26 1 e OJ-F P.et-R e (1.5) I 1..

response, must first be parsed to extract the final bit and

the modifier bits (1.5.1). The final bit must be processed

as it was for the S-frame response and the response modifier

bits must be decoded and the U-frame response classified as

either a disconnected mode (DN) response, an unnumbered (UA)

response, or a command (frame) reject (CMDR(FRMR)) response

(1.5.2). A DM response or a CMDR(FRMR) response from the

secondary node must result in an SABM command being sent to

the windowing process to initiate setting up the link

between the primary and secondary nodes. Also, this pending

link setup must be stored in the pending state change

variable (1 .5.3). If the U-frame resonse is a hA response,

then the pending state change variable must be accessed to

73

determine if a link setup or disconnect is pending. If so,

the state must be changed to the pending state and the

pending state change variable cleared (1.5.4).

Window Primary Information Blocks. As can be seen in

Figure 27, this process must exercise overall control over

both directions of the link transmission. A rejection

exception condition must be cleared by resetting the primary

send state variable V(S) to the N(R) supplied from the

Execute S-Frame Response (1.4) process and by sending a

reject ready indication to the Place I-Frame in X.25 Link

Queue. This is done by the Reset V(S) process (1.6.]).

Irregardless of whether the N(R) came from an I-frame, an RR

command, an RNR command, or a REJ command, it must be used

to update the lower window edge. This updated lower window

edge must then be used to place I-frames in the X.25 link

queue (1.6.2). The busy and ready indications must be used

to place the X.25 link in the ready condition as soon as

possible, if it is not in that state already (1.6.3). This

is done by generating an RR command to poll the secondary

node repeatedly until it indicates that it is in the ready

state. When the l.ink status input, the reject ready

indication, or the ready indication indicates that the

secondary node is in the ready state, then I-frames must be

placed in the X.25 link queue until V(S) is one less than

the updated lower window edge (modulo k) (1.6.A). Finally,

the Select Packet for X.25 Link (1.6.5) process must select

the level 2 packet to be sent next by servicing the I-frame

74

Pr Y(S)
Rejec N(P,)

1.6.1

,iz, V(S)

I-Frare N(R) lbdated Lw2r

1.6.2 1.6.4Rea&, N(R) L date Place
LLAA-T I-Frare

B-rzy P(R) in X.25 Lirk

'A'uxhed I-Fraw

1.6.5
T, C yrmnd Select

FkRet
for X.25 Pr n L--,,cl

aisy r ca m 1.6.3 Link 2 I'Da t

Pbll sAaLcuxmid
Se=idary
tor Ready

State

Ready_4-dicaticn

Figme 27 Mithi F -'Inxy Tnf(nr,-ut:icn Bloclos (1-6) EM

queue but giving priority to the SABM command, PR command,

or DISC command if one is waiting to be transmitted.

fz-e-C-u-t-e EDI.C -Pj.-Q-t-Q-cDj tqeconda" Node. As can be

7 c

seen from Figure 28, this process is very similar to the

Execute HDLC Protocol at Primary Node (1) process. There

are, however, some major differences. The valid primary

packet may be either an I-frame, en S-frame command, or a

U-frame command (3.2). Thus, the primary node must send

S-frame and U-frame commands to the secondary node while the

secondary node can only send back S-frame and U-frame

responses. Also, the secondary node must request recovery

from procedure errors by sending CMDR(FRMR) responses to the

primary node (3.7). Finally, the primary I-frame may have a

node status polling request that must be answered with

either an I-frame or an S-frame response (3.3,3.A).

Execte Primary I-Frame. This process is similar to

the Execute Secondary I-Frame (1.3) process but differs

slightly. The lower-level DFD of the Execute Primary

I-Frame (3.3) process in Figure 29 shows that the poll bit

is extracted from the I-frame rather than the final bit

(3.3.2). Other than this slight difference the I-frames are

processed almost identically by the primary and secondary

nodes.

Execute S-Frame Command. The lower-level DFD for the

Execute S-Frame Command (3.4) process is shown in Figure

30. It is also identical to its counterpart with the

exception of the poll bit (3.4.1).

Execute U-Fram Command. The Execute U-Frame Command

(3.5) process is quite different from its counterpart in the

primary node. As shown in Figure 31, the U-frame command

76

~j4 II
I

C~4~ a

.. I
a I

I a U
U * *

D ' '

~1l

sI~

77

U

3.3.1 3 3.3 cet -

Fr 29. Pr I-F at 3.3)

can be either a disconnect (DISC) command or an SABM command

transmitted from the primary node (3.5.2). The DISC command

must result in the secondary node entering the disconnected

state and generating a UA response to be sent to the primary

node. If the node was already disconnected, then a DM

response must be generated instead (3.5.3). The transmitted

SABM command must result in the link being reinitialized

with V(R) and VCS) set to zero. Moreover, a tUA responise

must be generated for this command (3.5.4).

Secondar Informtikn. The lower-level

DFD of this process is shown in Figure 32. n addition to

the processes required in the Window Primaty Information

Blocks (1.6), this process also must insure that responses;

. .

Mty P Idy
TY I

3.4.3
SCIA

S-FrdW Rw- , status Pady nimny
S-Frare Ctntrof-Ilield md Ixtract

P)
3.4.1 3.4.2
Fhrse pla-se piirnryS-Frap-- S Fr" Q vj

Camuid Ccntrol w; QJ t-1 CD
Field 3.4.4

Sox,
La Lus BLzyft-hmryP(F)
I 'act

r"(113 ---- 4primuy-
R-jecticn
ccnditicrF

3.4.5
-- 7Send

S-Fram FbIl Bit 'ect Reject fq(p)
CM ticn

t:

Figire 30. Dmite S-Pbare Counrid. (3.4) UM

MSC TA Rrv3i-rx-g;e

DISC QrmrA
COMnDd 3.5.3

U-rtane 3.5.1 bdifioFjits Disonwt IM W,-IxrL-4-3.5.2 LinkRff -sle D2wleU-Frzrv Camm"',
cammd Wifier
Cmtn-)l M111 U1
Field Bits Z-a-mitted kc-'[51Z

SAFM CAIMUYU

3.5.4
Set

U-Fraw FbIl Bit

Fivire 31. Bz-aite U-Pr" Gmumd (3.5) EM

79

pit 7-
Cn

pr
Reject 7p)

3.6.1
Feset
V(S)

43

P'* 100- 3.6.4
Place

I Frwe
Pt , _Fmt, in X.253.6.2 Urk

te

Prin Vkr
,To Vu)dow

BLISY-i Etc

DrSC-114
al P--,;pxLge

M12 ket

3.6.5
FbIl BEE Select

Packet
S-Frwle for X.2-5
Pbll BiF OV link

U-Fran2 3.6.3
Poll Bit set

% r
Bit

I-Frme
Pbll Bfit-

S-- 1--rr. v
PbI I-B t- 3.6.6

W-;Rnd
to S L-3 tus

P4CqIX!St

Nitm, I. 1,irtiv Fianbry Inf(m6cn Blccks (3.6) FED

80

are generated to all commands received from the primary node

and that in those responses, the final bit is set

(3.6.3,3.6.6).

PLicPs_-co _jeuiree nt. The X.25 protocol

requires that the RS-449 interface standard be used to

implement the physical level protocol. However, levels 2

and 3 do not require that a certain physical level protocol

be used. Thus, this requirement for the RS-449 interface

was not considered binding. There were, then, two principal

requirements for the physical level protocol. It had to be

a widely recognized standard to minimize the difficulty in

adding new hosts to DELNET and it had to be compatible with

the transmission medium selected and the distances of

transmission required. The distance from the hosts to their

entry nodes should not exceed 75 feet given the present

available space in the Digital Engineering Laboratory.

Thus, if these requirements could be met then the Transmit

Bits (2) process in the link level protocol coule be

performed.

Summa r y

This chapter has refined the hardware specifications

and addressed the software specifications for DELNET in

detail. The software specification was lengthy, and yet,

because of the partitioning and levels of abstraction made

possiblo through the use of Structured Analysis, it was

fairly easy to c-mprehend. The data dictionary contains

even more information on these specifications and for that

8]

reason is included as Appendix C. These requirements formed

the basic foundation for the overall structural design of

the DELNET software described in Chapter IV.

P 2

IV. Design of DELNET

I troduction

The previous chapters determined the user functienal

requirements and translated them into a detailed set of

hardware requirements as well as a structured software

specification. In this chapter, the hardware requirements

are employed along with supporting background information to

develop the hardware design. The software for DELNET is

also designed using Yourdon and Constantine's structured

design techniques to translate the structured specification

into the module structure charts found in Appendix D.

Finally, the software modules are allocated to specific

processors in DELNET.

Hardware Design

TopoQ-Qy. Although there was a requirement that the

topology be able to be easily modified, there was still a

need for an initial DELNET topology. The topology shown in

Figure 33 was chosen for several reasons. The basic loop

architecture of the nodes allows the routing algorithm to be

simple since a message has only two possible paths to its

destination node. This decreases the development time of

DFINET and allows it to be operational while a more

sophisticated routing algorithm is being developed to handle

more complex topologies. Also, the loop network has only

one more link between nodes than a minimum spanning tree.

This can be seen by c eletinq one link from the loop

12 3 4

Figur 33.~nsi III3Th r~lc

archtecure Th netorkin hiscasedegnertesto5

liercnet1. Sic6omr ik cnb eoe rm

15P 6

the loop network preferable in general for local networks

and very useful in the case of DFLNET in particular (Pef.

10: 75). There are disadvantages, however, to the loop

topology. The reliability decreases as the number of nodes

on the network increases. This is a direct consequence of

the near minimum number of links in the network. Also, the

response time will increase as the number of nodes increases

since each node that a message must pass through adds a

delay to the transit time. Since the initial number of

nodes on the network will be small and since the

availability ,;as only 90 percent, these disadvantages do not

pose a problem at present.

The star topology connecting the hosts to the node was

chosen for three reasons. First, it minimizes the loop

topology's disadvantages by decreasirg the number of nodes

in the network. Also, by allowing one node to interface

several hosts to DELNET, it is cost-effective since the cost

of the nodes can be substantial. This will be seen in a

1 ollowing section addressing the node design. In addition,

the star topology makes it practical to interface small

inexpensive computers such as the F & I Instruments

rlini-tiicro Designer (MMD-]) to the network (Fef.]]:

Chapter IV). This is true even though the computers' costs

might only be a fraction of the the node's costA,. ,nothrr

advantage is that the hosts that will intier ,ct thY ss will

each other can be grouped .t thc T T . r iu i .V

configuration, much of the traffic n (,c 9 xr1% t (Au.l.

B .. '

AO-AIOO 822 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCH400-ETC P/S 9/2
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE AIR FORCE INSTITUTE -ETCfU)

UNCLASSIFIED AFIT/SE/'EE/81HM3 NI.

24 lfllfllfllfllfllf
mhhh|hE|hEE.EE
EhhHIHIIHaHihE*IuuuuIuuuIum
IIIIIIIIIIIIu
IIIIIEIIIIIEE
'IEEE'.'.'ll.

its entry node to the network. This decreases the average

response time on DELNET and decreases the amount of traffic

transmitted between nodes. However, reliability from the

host's perspective is decreased since the failure of a node

can cause several hosts to lose access to the network.

Also, there must be a greater transmission rate between

nodes than that between the hosts and the nodes. This is to

keep the nodes f rom acting as bottlenecks and thereby

decreasing throughput to an unacceptable level.

Three hosts were chosen for the initial

network configuration. This number represents the minimum

number of hosts that would exercise the protocols

sufficiently. The VAX-11/780 was chosen because it is theI

most powerful and sophisticated of the minicomputers in the

Digital Engineering Laboratory. it also has the capability

to transfers files to and from the CYBER 750 and thus helps

to partially fulfill the user requirement for access to that

host. The Intel Series II MDS was chosen to represent the

other end of the spectrum since it is an 8080-based

microcomputer and has a high rate of usage. Also, a

distributed database system has been designed for this

computer that should aid efforts in implementing a

distributed database system on DELNET. The third host

chosen was the Data General N~ova. This computer has a high

usage rate and is already linked through a shared disk drive

to the Data General Eclipse. it is also linked to the Cyber

750 mainframe computer through a communications protocol and

86

a 300 baud telephone line. Thus, the Nova will allow the

other hosts on DELNET to have indirect access to the Cyber

750 and the computational power of the Eclipse.

Nodes. The first possibilities examined to perform

the function of the nodes on DELNET were existing local

network software packages that might be procured to4

interface the hosts selected. These were rejected for two

principal reasons. The commercially available networks

offered no flexibility to the protocols they employed and

would have been very difficult to modify. This is

especially true since these packages do not usually include

the source code. The other deterrent was the high cost of

these network packages. For at least one of the networks,

the cost of including many of the computers in the Digital

Engineering Laboratory was higher than the cost of the

computers themselves.

A Universal Network Interface Device (tJNID) developed

by the Digital Engineering Laboratory was also studied for

possible use as the node in DELNET (Refs. 4,18). The UNID

offered several advantages. Since it was developed as a

series of Digital Engineering Laboratory research projects,

complete documentation on the development and design of the

UNID is available. Thus, any required modification to the

UNID's hardware would be facilitated. The UNID was

developed for a multi -loop network but can be used in all

topologies except a bus architecture. So, the requirement

for flexibility in the topology could be satisfied. In

87

addition, the use of two Z-80A microprocessors in each UNID

allows parallel processing to take place and minimizes the

time that the packets must spend being processed by the

nodes. The availability of a higher level language, PL/Z,

and a software development system that has been interfaced

to the UNID is also a significant advantage. Finally, using

the UNID in DELNET also would satisfy an existing

requirement to test the UNID in an operational environment.

The major disadvantage to the UNID was its fairly high cost

(approximately three thousand dollars) which limits the

number of UNIDs that can be procured initially for DELNET.

Because the advantages of the UNID greatly outweighed the

disadvantage associated with its cost, the UNID was selected

as the node for DELNET.

One UNID has been built and has been tested using some

basic software routines (Ref. 4). Because this UNID was

still in the prototype stage, only enough parts for one

additional UNID were ordered. The two UNIDs will allow

eight hosts to be included in DELNET and so the three hosts

in the initial configuration can be easily accomodated.

Transmission Mg&Ju=. The requirement that one link

in DELNET use fiber optics was met by procuring a fiber

optic data link to connect the two UNIDs. This link was

chosen to be implemented using fiber optics due to its

requirement for a high transmission rate (56 Kbs) and its

length (120 ft). The links between the UNIDs and the hosts

will be implemented using twisted pair since the

88

transmission rate is limited to 19.2 Kbaud by the serial

ports on the hosts and the distances between the hosts and

the UNIDs are less than 75 feet. Since no problems have

been experienced in the Digital Engineering Laboratory with

links of this distance, this lowest-cozt option was

selected. As additional UNIDs are added to DELNET, these

will be interconnected using shielded twisted pair. Other

mediums considered for the links included coaxial cable,

broadband coax, and ribbon cable. The coaxial cable would

allow higher transmission rates but was not considered

justified by the throughput and response time requirements.

Very high transmission rates can be obtained using broadband

coax and yet the modems required for the interface to the

medium are very costly. Broadband coax is, however, an

attractive alternative for local networks when very high

transmission rates are desired (Ref. 8). Finally, ribbon

cable was rejected due to its low noise tolerance and

because a bit-serial protocol was to be employed. The total

hardware design is shown in Figure 34.

Software Desion

IntLduli Qn. The design of the software was

accomplished using structured design techniques proposed by

Yourdon and Constantine. Two principal methods were used to

translate the structured specification into module structure

charts, transform analysis and transaction analysis. These

techniques were chosen due to their direct correspondence to

the DFDs specified in Chapter 3.

89

Trnsor aalsi i ue to Utaslt a DD nt

t eata ofo
fr meral c hda tas Fiber Vio -he 7Mo

1 9.2 f

the secon set and hethird se ouPuthedtitrh

Intel
Serie II

sink 34. t itio Ntrk st moigduties

Transform analysis is used to translate a DFD into

three sets of modules. The first set of modules gets data

from the source. The data is transformed into the output by

the second set and the third set outputs the data to the

sink. To partition the DFD into the three sets of modules,

the DFD is divided into an afferent branch, a transform

section, and an efferent branch. This is done by tracing

the input from the source to the furthest data flow where it

is still recognizable as an input. Likewise, the output is

traced backwards from the sink to the first data flow where

it is recognizable as an output. These two data flows then

are used as the boundaries between the three sections of the

DFD.

For the first set of modules, the structure is derived

90

by making an afferent module for each data flow and a

transform module for each process. This is illustrated in

2 GetCC

BB

AA

(a) (b)

Rgure 35. Factcrixr the Afferent Bmrh

Figure35. For the second set of modules, the first module is

factored into subordinate transform modules that perform the

functions stated by the process names. An example of this

is shown in Figure36. The structure for the last set of

modules is designed similarly to the set of afferent

modules. As shown in Figure 37, the efferent module has

subordinate to it another efferent module and a transform

module that relates the two data flows specified by the

efferent modules. A complete description of transform

analysis is given in Yourdon and Constantine's book,

atruturd Design (Ref. 22: 187-222). The module structure

chart showing all three sets of modules is shown in Figure

91

Ii

5 sfomCFF

E5

4

D. E
3\

C) (b)

Figze 36. Factdrg the Taisfim Sectim

38. This technique was used throughout the module structure

design phase. An example of this technique being used in

the DELNET design is shown in Figure39 for the file transfer

protocol.

The other technique that was used a great deal was

transaction analysis (Ref. 22: 223-229). This technique is

particularly useful for translating DFDs with processes that

classify an input as one of a number of outputs. Using

transaction analysis, a DFD like that shown in Figure40(a)

may be translated into a module structure chart like that in

Figure40(b). The module structure chart for the help user

protocol is shown in Figure 41 as an example of this

technique.

Allocation -f Sof tware Module9

92

F

G JGHJG%

7 G t

H Pua

F

FYire 37. Factcrirg the Efferent Brmh

A complete set of module structure charts can be found

in Appendix D for the system software design. However,

there are some design decisions that were made that are not
obvious from the module structure charts. These decisions

include the allocation of the software modules to the

various processors on DELNET and also the allocation of some

of the lowest level module functions to hardware devices.

These allocations are discussed in the following

paragraphs.

jg£ jy-eLj. Protocol Dejqn. The network operating

system (NOS) is obviously distributed over all the

processors in DELNET. However, an attempt was made to

93

94

95

A
A@

21Bl

r 3 D

(a) (b)

Rgjme40. Mcticn Aalysis Ted ique

centralize as many functions that were not host-specific in

one host for two reasons. The configuration control and

ease of modification are both enhanced if only one copy of

the module exists at an NOS host. If each host has a copy

of each module, then a change to the network command

language entails changing the software in every host. Also,

the presence of modules in every host performing identical

functions unnecessarily uses storage space on each host.

There are some disadvantages to centralizing as much of the

NOS as possible on one host, though. If the NOS host fails,

then the-network is not operational. Also, more traffic

must be routed to the NOS host than would be the case if

each host processed the network commands. Table 8 lists

those modules that are present in each host and Table 9

96

97

Table 8

High-Level Protocol Modules Present at Each Host

Get User Command

Put User Response

Execute User Command

Execute Local Command

Route Local Command

Execute Routed Local Command

Route Local Response

Execute Network Command

Send Command to Host with NOS

Send Response to User

Get Network-Structured File

Get Host-Structured File

Restructure File for Network

Transmit Network-Structured File

Restructure File for Host

Store Host-Structured File

Log User into Network

Log User out of Network

lists those modules that are located only in the NOS host.

Obviously, most of the modules are too host-specific to be

located in the NOS host, however those modules most likely

to be changed were able to be centralized there.

Loer-levelProtocol .gn. The availability of the

98

Table 9

Additional High-Level Protocol Modules

Present at NOS Host

Execute Transmitted Network Command

Transfer File

Transmit Get-File Command to Source Host

Control Session

Get List of File Transfers

Help User

Provide General Network Introduction

Provide Explanation of File Transfer Command

Provide List of Active Hosts and Devices

Provide Explanation of Session Control Commands

two processors in the UNID allowed almost all the

host-to-host, network, and link level protocol modules to be

allocated to the nodes. This, however, generated an

additional requirement for the host-to-node interface. A

virtual terminal protocol was required to make the node

appear as a terminal to its hosts. Thus, the overall

allocation of modules between the processors was as shown in

Figure 42

By locating the calling host protocol in the local side

of the UNID, the amount of work necessary to implement this

protocol is decreased significantly. This is because the

modules are not host-specific and need only be written

99

I,

LW !

r--

.1-i

-\ /

-- H--i

I I

I oo~

once. The virtual terminal protocol is the only

host-specific interfacing requirement and this can be

implemented with an inter rupt-driven routine on single-user

hosts and by sending the necessary operating system commands

on a multi-user system like the VAX-11/780 to create a file

from a terminal and to output a file to a terminal.

Another advantage to allocating the calling host

protocol to the local side of the UNID is that the calling

host and the calling node protocols can communicate through

32 Kbytes of shared memory in the UNID. There are also 32

[Kbytes of memory for each processor that enables all

buffering and packet assembly to be done in the node. The

shared memory is much mere reliable and so this is also an

advantage.

The same advantages hold for allocating the called host

protocol also to the local side of the UNID. In addition,

because the calling host and called host protocols are so

similar, most of the modules can be shared by both.

Likewise, the calling node and called node protocols can

also share most modules between them.

The routing algorithm module must be allocated to the

network side of the UNID as must be the link protocol

modules. However, almost all of the Extract Valid Packet

Module and Insert Packet in the Bit Stream Module can be

accomplished by the Z-80 Serial Input Output (SIO)

integrated circuit. This SIO is programmable and ran

accomplish many of the functions such as CRC checking at a

101

much faster rate than could be done by the network processor

(Ref. 23).

This chapter has translated the hardware and software

requirements into a system design. The hardware design

specifies the topology to be used, the hosts to be included,

the specific node to use, and the transmission mediums to be

used for each of the links. Each of these design decisions

is based upon the requirements analysis and supported by

background data gained f rom researching the various design

options. The software design is based upon the structured

specification and was derived primarily using transform

analysis and transaction analysis. These techniques are

very brief ly described and the module structure charts are

included in Appendix D. Finally, the software modules were

allocated to the processors in the network and this

allocation design was supported by an analysis of the impact

of each allocation decision.

102

~.Implementation Aa *Tting Df .Lb

Netwok Command Lanug InterLete

Introduction

The modules in the NOS host that interpret the network

commands entered by the user have been implemented. In4
addition, the "help" user protocol was implemented
completely. The unique factors that impacted this

implementation are discussed in this chapter as are the

basic principles used in implementing the modules. Also,

the testing procedures that were employed to verify the

modules are summarized. Finally, the testing results are

stated.

Implementation

One of the first challenges in the implementation phase

was to devise a log-in procedure to the network that would

not be host-specific. The word, "NETWORK," was chosen as

the character string to bc used for two reasons. It does

not contain any special characters that might be

misinterpreted by the host's operating system. Also, this

word is easy for the user to remember and so it improves the

man-machine interface. This module was implemented on the

VAX-11/780 by placing a symbol assignment in the operating

system routine that logs in the user. This symbol

assignment equates the character string "NETWORK" to a

command procedure file call. Thus, typing in "NETWORK"

causes a command procedure file to be executed which then

103

activates the main network module that interprets the

network commands. Although it was possible to implement

this module on the VAX-11/780 without modifying the actual

operating system, this may not be possible on the Nova and

Intel Series II.

Another man-machine interface consideration was the

structure of the network commands. These commands were

implemented with position-independent parameters. This

greatly simplifies for the user the task of learning the

network command structure and also decreases the number of

erroneous commands that will be entered (Ref. 13: 11-15).

Instead, the short abbreviations, FN (filename), DD

(destination device) , DH (destination host) , SD (source

device) , and SH (source host) are used to identify the

parameters. Moreover, if any parameter is entered

erroneously, then the user is prompted for a correct entry

for that parameter. Missing parameters are also handled in

this manner.

The user has the option of entering either the full

keywords for the commands or just the first letters of the

j keywords. This keeps a regular user of the system from

being hampered by long commands and yet keeps a novice or

infrequent user from having to cope with cryptic one-letter

commands and parameters. The list of keywords in the

network command language is given in Table 10.

The user "help" protocol was implemented and can

provide the user with all information required to use

104

Table 10

Valid Keywords

Network Command Parameter !

LOGIN
LOGOUT
TRANSFER FILE
HELP

FieTase Parameters

Source Host (SH--), Destination Host (DH=) ,

INTEL
NOVA
_VAX

Source Device (SD--)

FLOPPYDI SK
.HARDDISK
TAPE

Destination Device (DD=2)

CONSOLE
.LOPPYDISK
HIARDDI SK
PRINTER
TAPE

LcHost Pr amete

Null (Defaults to user host)
INTEL
NOVA
VAX

fILE TRANSFER

LIST CONFIGURATION
SESSION COMMANDS

105

DELNET. This protocol is tiered so that entry into to the

protocol can be accomplished by simply typing "HELP" and yet

with the addition of another keyword more specific

information can be gained.

One factor that significantly increases the

implementation effort is the need for complete error

detection and recovery. Every module had to be protected to

withstand any user input irregardless of its likelihood.

This is because a process in a remote host aborting due to

an out-of-range variable or other invalid input would never

be perceived by the user who input the command. Thus, error

recovery would be almost impossible for that user.

Therefore, every module was implemented to validate the

inputs first and issue error messages to be transmitted back

to the user in lieu of the normal response if an invalid

input was detected. This greatly increased the size and

complexity of the modules and yet did succeed in making the

modules impervious to invalid user inputs.

During implementation, every attempt was made to

continue the practices employed during the requirements

specification and design. In particular, each module was

implemented such that it hid the data structures and

algorithms employed as much as possible from other modules.

One example of this was in the Transfer File module. This

module was passed the string of characters that followed the

transfer file keyword. Thus, the superordinate module did

not require any knowledge of the actual number of file

106

transfer parameters. Data coupling between modules was also

an objective as was functional cohesion within the modules.

These objectives were satisfied where possible in the design

phase and yet care had to be taken in the implementation -

phase to insure that the coupling and cohesion previously

achieved were not compromised.

Finally, careful consideration was given to the data

structures to be employed. For example, the tradeoffs of

using a linked list versus an array to store the character

string representing the network command were thoroughly

studied before the array was chosen. The array offered

faster direct access to key positions in each parameter

field and was simpler to implement. On the other hand, the

linked list allowed parameter lengths and command lengths to

vary more freely and would require less storage space than

the array. This would be especially true if the expv~rt mode

was used most often. The requirements for ease cf

maintenance and the desire to limit command lengths to one

packet (128 bytes) made the array more attractive.

The last phase of implementation for each module

consisted of debugging the module. Care was taken to insure

that changes made in this phase did not destroy the

structure of the module originally implemented. The code

for these modules is included in Appendix E. Once the

modules were free of compilation errors, they were tested

using stubs and drivers as well as the techniques described

in the following section.

1 07

Because of the need for complete error detection and

recovery, the testing had to be rigorous. As a starting

point, inputs were chosen to insure that all segments of

code were executed. This was done by choosing inputs to

cause each branch to be taken. Also, when a branch depended

upon a compound logical expression, inputs were chosen for

each of the possible logical combinations.

Equivalence class testing was also used. This

procedure entailed breaking the input into its components

and testing combinations of valid components until all

equivalence classes of valid components had been covered.

Then invalid components from each equivalence class were

tested individually. As an example of this method, the

testing of the transfer file command is described. First,

valid file transfer parameters were used in the file

transfer commands until all valid keywords had been included

in at least one command. Then, an invalid file transfer

parameter was tested with all other file transfer parameters

being correct. This second procedure was repeated until one

invalid keyword had been tested for each of the file

transfer parameters.

Boundary value analysis was also used to test the

modules. The values at the borders of the equivalence

classes were tested to detect "off by one" errors. This

proved to be one of the most useful techniques. As an

example of this technique, the testing of the network

108

command parameter is described. This parameter could not

exceed twenty characters. To test the behavior of the

module that parsed the network command, network command

parameters that were zero, one, nineteen, twenty, and

twenty-one characters long were used.

The testing was done incrementally. As a module was

coded and debugged, it was then integrated into the set of

modules that had already been tested. This new set of

modules was then rigorously tested using the techniques

already mentioned. This procedure was repeated until the

test of the last module was actually a test of the complete

network command language interpreter. This method worked

very well and allowed inter~face problems between modules to

be isolated quickly. Finally, records were kept of each of

these tests to aid in maintaining the program. Using these

documented results, a modification to the network command

language can be verified by using the same input data in

addition to new data to test the extensions or modifications

to the network command language. These test results are

included as Appendix F.

The goal of the testing was more than to just give some

assurance that the program executed correctly. It was also

to characterize the response of the program to the class of

possible inputs. While this is not an attainable goal, due

to the large universe of inputs that are possible, it did

succeed in forcing the testing effort to exceed that

required to convince the author of the program that his

109

program was correct. After testing was completed, there

were no known inputs that resulted in a logical error in the

program.

The network command language interpreter and the user

help protocol were both implemented. The network log in

procedure w as implemented such that it was not

host-specific. Also, the commands were implemented with

position-independent parameters and made interactive so that

the user could be prompted for invalid inputs. Both a

novice and expert mode were made possible by the

implementation and the modules were implemented to validate

all inputs. Both information hiding and a careful selection

of data structures were employed during the implementation.

Finalythemodules were tested incrementally using path

analsisequivalence class testing, and boundary value

310

Y1. -Conclusions An~ Recommendations

From the outset of this investigation, the development

of DFLNET was based upon the actual requirements of the

Digital Engineering Laboratory. The user interviews were

employed both to determine these requirements and to

document them. From these requirements the functional

requirements of DELNET were determined.

The functional requirements were used to determine the

hardware specifications and the software structured

specification. This portion of the investigation was the

most time-consuming. Tn determining these specifications,

however, design decisions had to be made. Thus, the process

was iterative.

The time invested in the structured specification did

prove worthwhile, though, when the design phase was

start-ed. Because of the amount of partitioning that had

already been done, the design proved to be fairly

straightforward. Structured design techniques were employee.

and then the software modules were allocated to the

processors in the network.

The software modules were also implemented using

structured techniques. Module coupling and cohesion were

monitored and structured programming was employed. The most

difficulty was encountered in the interface to the

VAX-11/780 operating system to implement the "Get User

Command" module on that host.

]=W11

The testing was conducted thoroughly using branch

analysis, equivalence class testing, and boundary value

analysis. The implemented modules were also tested

incrementally which simplified the overall system testing

greatly.

In summary, through the user interviews, Structured

Analysis techniques, and Structured Design techniques, a

top-down design of DELNET was achieved. All primary

requirements of the Digital Engineering Laboratory for file

transfer capability and resource sharing have been met in

the design as have the pedagogical requirements for

flexibility in the topology, protocols, and transmission

medium. The structured approach allowed the interfaces

between the layers of protocol to be clearly defined and

together the structured specification and the module

structure charts will allow the implementation of DELNET by

the follow-on investigations.

Recommendations

Because of the structured approach, it is possible for

the implementation to be accomplished through concurrent

research projects. One of the research projects should be

directed towards interfacing the host to the UNID and

implementing the rest of the high-level modules. The

specific tasks involved in this effort are listed below:

1. Tmplement virtual terminal protocol for UNID

2. ment file restructuring modules for each host

112

3. Implement get-file, store-file, and user-command

modules for each host

4. Implement command routing table in each host

5. Test network and gather performance data

6. Update network users manual

7. If time permits, interface Nova to DELNET through the

Cromemco rather than through its serial port

8. If time permits, add more hosts to the network

The other research project should require that the X.25

modules and the routing algorithm module be implemented in

the UNID. These objectives will also require a thorough

understanding of the UNID. The specific tasks for this

investigation are listed below:

1. Implement modules listed on module structure charts for

Level 3

a. Suggest using Zilog software development station and

PL/Z and then using code generator to generate Z-80 code for

the UNID

b. Test and debug network protocols

2. Implement modules listed on module structure chart for

Level 2

a. Some modules can be implemented in PL/Z, others are

performed by the hardware, others must be written in

assembly language

b. Implement physical links and test (includes a fiber

optic link)

113

c. Test and debug link protocols

3. Implement the routing algorithm module and its lookup

table in the UNID.

4. Collect performance data on X.25 protocol (eg.,

efficiency, throughput, response times)

With these two follow-on investigations, DELNET should

have an initial operational capability. Additional

follow-on efforts to enhance the network are also

recommended, however. Because there was some interest in a

distributed database on DELNET, one should be implemented.

A design has been formulated for this database in another

research project at the Air Force Institute of Technology

(Ref. 17). Also, a distributed processing layer should be

developed eventually to enable the sharing of software

tools. More UNIDs should be procured and more hosts should

be added to DELNET to enhance its usefulness as a tool for

research in local computer networks. Implementing other

protocols on DELNET will also be necessary if the network is

to be used for research in this area. In addition, a more

complex routing algorithm may be required as the number of

nodes increases and will definitely be required for more

complex topologies that might later be used. Thus, it is

recommended thai the routing algorithm recommended by

Ravenscroft also be implemented (Ref. 16). Finally, the

usefulness of the network will be enhanced by the addition

of remote bootstrap capability and gateways to the CYBER

750, the ARPANET, and AFITNET.

]14

Bibliography

1. Adams, R. Cade. A Distibuted Mini-Computer Network.
MS Thesis. Wright-Patterson AFB, Ohio: School of
Engineering, Air Force Institute of Technology,
December 1977. (AD-A055-254)

2. Alford, M.W. and I.F. Burns. "R-Nets: A Graph Model
for Real-Time Software Requirements," Proceedings Qf
he Symposiu n Computer Software Enineerin. New

York: Polytechnic Press, 1976.

3. Atlantic Research Corporation. Technical Presentation
X.25-SDLC Tutorial. Atlantic Research Corporation,
1980.

4. Baker, Lee R. Prototype and Software Develon t IQ
Universal Network Inefc _Dev . MS Thesis.
Wright-Patterson AFB, Ohio: School of Engineering, Air
Force Institute of Technology, December 1980.

5. Bass, Charlie et al. "Local Network Gives New
Flexibility to Distributed Processing," Electronics,
53: 114-122 (September 25, 1980).

6. DeMarco, Tom. 5tructured Anlyi s System
Specification. New York: Yourdon, Inc., 1979.

7. Digital Equipment Corporation. DistrLbed Progessing
and Networks, A Technical overvew oaf Digital'
Ntwring Products a Capabilities. Manufacturer's
data. Maynard, Mass.: Digital Equipment Corp., 1980.

8. Dineson, Mark A. and J.J. Picazo. "Broadband
Technology Magnifies Local Networking Capability," Pat
Communications, 9: 61-79 (February 1980).

9. Folts, Harold C. and Harry R. Carp (Editors). Data
Communications 5tanards. New York: McGraw Hill
Publications Co., 1978.

10. IEEE Press. onferenc _on Local Comnuter Networks.
New York: IEEE Press, Inc., 1979.

11. Larsen, David G. et al. The B_ a -I. Derby,
Connecticut: E & L Instruments, Inc., 1977.

12. Liebowitz, Burt H. and John H. Carson. Titorial
Disribe Processing- CQMPCON F.aJ 22. New York:
IEEE Press, 1977.

13. Martin, James. Design DI Man-Computer ofloIgues.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1973.

115

14. Metcalfe, Robert M. and David R. Boggs. Ethernet:
Diribud Packet for Local Computer
Networks. Technical Report CSL-75. Xerox, Inc., Palo
Alto, California. May 7, 1975.

15. Myers, Glenford J. Composite/Structured Dgsqn. New
York: Van Nostrand Reinhold Co., 1978.

16. Ravenscroft, Donald L. E Engineering Digitl_
Deign Laboratory Communications Network, Par t and
2. MS Thesis. Wright-Patterson AFB, Ohio: School of
Engineering, Air Force Institute of Technology,
December 1978. (AD-A064-729)

17. Roth, Mark A. ThQ Deg and Implementation of a
PedaggclRela Database Syste. MS Thesis.
Wright-Patterson AFB, Ohio: School of Engineering, Air
Force Institute of Technology, December 1979.
(AD-A080-395)

18. Sluzevich, Sam C. Peliinary Design Qf a Universal
Network n Device. MS Thesis. Wright-Patterson
AFB, Ohio: School of Engineering, Air Force Institute
of Technology, December 1978. (AD-A064-059)

19. Softech, Inc. An Introduction t SADT--Structured
Analys and Ald DeagTgCn nigue. Technical Report
9022-78R. Softech, Inc. Waltham, Massachusetts.
November, 1976.

20. Thurber, Kenneth J. TIutaria: Disibuted Processor
Communication Architecture. New York: IEEE Press,
1979.

21. Thurber, Kenneth J. and Harvey A. Freeman.
"Architecture Considerations for Local Computer
Networks," PrQocediag, ist International C n
Distribute Computer Systems. 131-141. New York: IEEE
Press, October 1979.

22. Yourdon, Edward and Larry L. Constantine. S Lutte
Design: Fundamentals of a D f Computer
Program and Systems Design. Englewood Cliffs, N.J.:
Prentice Hall, Inc., 1978.

23. Zilog, Inc. Z80-SI Product Specification,
Preliming~y. Manufacturer's data. Cupertino, Calif.:
Zilog, Inc., March 1978.

116

User Interview Results

This appendix contains a compilation of the results of

the user interviews that were conducted in the requirements

analysis phase of the investigation. These results provided

the basis for the specification of the DELNET functional

requirements in Chapter II.

117

Interview uuvline

Introductory Narrative

I am in the preliminary design phase for the Digital

Engineering Laboratory Local Computer Network (DELNET) and

am attempting to determine the uses envisioned for DELNET as

well as all functional requirements associated with it. For

this reason, I would appreciate any help that you can give me

in accurately determining these requirements. Hopefully, the

questions that I have prepared in the interview outline will

provide a framework in which you can communicat; your ideas

to me in this area.

The interview is divided into three sections. The first

section lists typical uses of local computer networks, asks

you to evaluate the benefits of having the capability for each

use on DELNET, and then asks you to specify which uses you

would like to see implemented first. The second section lists

some of the functional requireme nts that must be determined

and asks specific questions dealing with each of these re-

quirements. At the end of this section, you will be asked to

rate each of the functional requirements on a scale from not

applicable to essential. Finally, the third section requests

that you express any ideas that you have concerning DELNET

that were not expressed by your responses to the questions in

the first two sections.

Name of the Person Interviewed

Date of Interview_ _

Courses Taught by Professor_

118

Section I Projected Uses of DELNET

A. Resource Sharing

1. Peripheral Sharing--Capability to access network from

any terminal and access any peripheral in the network from

any host.

2. File Access and Transfer--Capability to transfer files

between the devices and the hosts with all file restructuring

transparent to the user.

3. Software Tool Sharing--Capability to access programs,

compilers, cross-assemblers, and utility routines anywhere in

the network for the user's program.

4. Access to ARPANET--Capability to access ARPANET from

any terminal.

5. Access to CYBER 750--Capability to access CYBER from

any terminal.

6. Access to AFITNET--Capability to access AFITNET from

any terminal. AFITNET is a network of computers that will

execute much of the AFIT workload that is currently on the

CYBER.

B. Distributed Processing--Capability of executing job pro-

cesses that can run concurrently on different computers.

C. Distributed Databases--Capability to access and maintain

databases that are distributed across several computers in

the network.

119

D. Fault-tolerance--Capability to provide a more graceful

degradation of user service when a network failure occurs.

Projected Use I Very IBeneficiall Somewhat 1Of LittlelOf Nol
IBeneficiall IBeneficiall Use I Use I

Peripheral I I I I I
Sharing I 7 I 0 I 0 I 0 I 0

File Transfers 1 5 I 2 1 0 1 0 I 0

Software I I I I I
Tool Sharing 1 2 1 4 1 1 I 0 f 0

Access to I I I II
CYBER 750 I 3 I 3 I 1 1 0 I 0

Access to I I I II
AFITNET 1 3 1 4 I 0 0 I 0

Distributed I I I I
Processing 1 2 1 1 2 2 1 0

Distributed I I I I
Databases I 2 1 0 1 2 1 3 0

Fault I I I II
Tolerance 1 0 I 1 1 1 3 2 1

E. What group of things would you like to see implemented

first?

Peripheral Sharing ------7

File Transfers ---------- 6

Software Tool Sharing---I

Access to CYBER 750 ----- 1

Distributed Database ---- 1

120

Section 11 Functional Requirements of DELNET

A. User-oriented Requirements

1. Throughput

a. For the courses that you will be teaching during

the next four quarters, which computers do you expect to be

utilized by your students?

b. What will be the average utilization?

c. what will be the maximum utilization?

Computer Normal Usage Maximum Usage

Nova/Eclipse 8 hours/day 24 hours/day

VAX-11/780 7 hours/day 10 hours/day

LSI-lls 10 hours/day 18 hours/day

Intel Series 11 2 hours/day 3 hours/day

MIME 3 hours/day 4 hours/day

d. H-ow would you see the network being utilized by

your students?

File Transfers ------- 3

Peripheral Sharing --- 1

Access to CYBER 750--l

Simulations ---------- 1I

Interactive Mode ----- 1

2. Response Time

Do you forsee any projected uses of the network that

require that the response time of the network to a set of

commands not exceed some threshold?

121

No --- ---------

Yes, 60K file transfers from CYBER in less than 10 min

Yes, file transfers in 10-15 seconds

Yes, interactive command responses in 5-7 sec

Yes, interactive command responses in 2-3 sec

Yes, interactive command responses in less than 1 F'ec

Yes, inputs echoed in less than 0.5 sec

Yes, general response time should be less than 1 min

Yes, standard deviation of the response time distri-
bution should less than 1/2 the mean response time

3. User Interface

a. Would symbolic device accessing be desirable?

(Making the actual host that an I/O device is connected to

transparent to the user)

Yes --- 7

No ---- 0

b. Should the same be done for software tools?

Yes------------------- 5

No ------------------- 1

Should have option --- l1

C. What other features should the network present to

the user?

Overall Transparency ------------------------- 4

Error Pecovery------------------------------- 1

User Helps----------------------------------- 1

Option to Waive Transparency ---------------- I

System Disk Center---------------------------1I

Database Access for Applications Proqrams --- l1

1 22

4. Security

a. Do you forsee the running of classified data or

programs on the network, and if so at what classification?

Yes---0

No ---- 7

b. Do you forsee the need to protect databases on the
network from unauthorized access?

Yes---4

No ---- 2

Maybe-l

Access to the network needs to be controlled--l

Varying levels of access are needed ----------- 1

5. Availability

a. What is the minimum percentage of time that you

feel that the network should be available?

b. What is the reason for giving the above availabi-

lity?

99.9%--.-1 (This should be attainable)

90% ------ 3 (Research needs for digital signal
processing, should approach availa-
bility of machines)

80% ------1 (Gives some slack)

60% ------1 (Sufficient to meet requirements of
digital laboratory)

6. Other User-oriented Requirements

Self-answering modem connected to one node ---- 1

123

B. Design-oriented Requirements

These requirements are not as user-oriented and you need

only comment on those that you have interest in.

1. Flexibility

a. What changes do you see being made to the network

during the next few years?

More hosts and devices being added to it --------6

An on-line 5 Mbit storage device being added ---- 1

Being used more for non-DEL purposes ------------ 1

More networks being accessible from DELNET ------ 1

Workload changing from ainly file transfers
to more interactive command use ---------------- 1

More software development systems being added---1

b. How important do you feel that it is for DELNET

to be easily reconfigurable with respect to the following:

Network Subcomponents I Very ISomewhati Not IPedagogicall
I I I I Only

New Computers and I I

Devices 1 7 0 1 0 C

New Topologies 1 0 1 1 2 4

New Protocols I I 1 I 1 1 4

New Transmission I I I
Medium I 2 31 1 I 3

Important to be able to vary between serial and parallel-I

2. Performance Monitoring

What performance monitoring capabilities should DELNET

have?

124

Collect accounting data --------------

Collect node statistics ---------------- 3

Hardware monitors ---------------------- 2

Software monitors ---------------------- 2

As much as possible --------------- 2

Monitor network status ------------------ 1

Detect network bottlenecks ------------- 1

Performance monitoring node ------------- 1

3. Pedagogical

One of the purposes of the network is to provide a

learning and experimental tool for the students in such areas

as digital hardware design, performance evaluation, applica-

tions programming, computer networking, and operating systems

design.

What specific requirements do you feel are needed to

insure that these goals are met? (For instance, one such

suggested requirement is that DELNET provide the flexibility

for implementation of different communications protocols,

information formats, and network or subnetwork topologies).

Flexibility ---------------------------- 4

Performance Monitoring ----------------3

Testing a fiber optic link ------------ 1

4. Distributed Processing Language

What lanquage(s) would you like to see implemented

on all or most of the hosts if a distributed processing

capability is implemented?

125

Pascal ------- 7 (one specified UCSD Pascal)

Ada ---------- 6

FORTRAN ------ 5

BASIC -------- 1

Ada has powerful control structures for distributed processing-i

5. Other design-oriented requirements

Are there any other design oriented requirements that

should be addressed?

None ---- 7

C. Plow would you rank the functional requirements for the

above areas?

I Not lMarginal-ylApplicablel Very jEssentiall

Area lApplicablelApplicablel JApplicablel

Throughput I 1 I 1 1 3 1 2 1 0

Response I I I III
Time 1 0 1 1 I 2 1 3 1 1

User I I IIII
Interface 1 0 1 0 1 1 1 3 1 3

Security 1 2 1 1 1 1 1 1 2 1

Availabilityl 0 1 1 I 1 1 3 1 2

Flexibility J 0 1 0 1 0 1 4 1 3

Performance I I II II
Monitoring 1 0 1 1 1 0 1 4 I 2

Pedagogical 1 0 1 1 1 0 1 4 1 2 1

Distributed II11
Processing III
Language I 0 I 2 1 2 3 I 0

126

Section III Other Comments

What other comments or suggestions do you have concerning

the projected uses and/or functional requirements of DELNET?

1. It would be nice to have a general purpose node for

checking out student projects with network resources.

2. The network software must be interrupt-driven.

3. It would be nice to be able to interrogate the net-

work to find a file that was sent.

4. The network should not be used for general software

development.

5. The requirement to use all nodes is probably only

applicable one percent of the time.

6. It should be easy to initialize the network with an

arbitrary subset of the nodes available on the network.

7. The number of terminals and their locations should be

~adressed.

8. Top-down decomposition and structured analysis should

be used in the design.

127

List of Users Who Were Interviewed

User's Name Position on Faculty Area of Interest

Capt Roie Black Math Assistant Prof Compiler Theory,
Numerical Analysis

Dr. Thomas Hartrum EE Assistant Prof Databases, Performance
Monitoring, Operating
Systems

Capt Larry Kizer EE Instructor Digital Signal
Processing

Dr. Gary Lamont EE Professor Computer Engineering/
Computer Science

Capt James Moore EE Instructor Computer Networking

Maj Alan Ross EE Assistant Prof Computer Architecture

Maj James Rutledge EE Assistant Prof Software Engineering

Capt Walter Seward EE Assistant Prof Computer Architecture,
Computer Networking

Maj Michael Wirth Math Instructor AFITNET design

128

Appendix B

Digital Engineering Laboratory Floor Layout Diagram

This appendix contains a floor layout diagram of the

Digital Engineering Laboratory at the Air Force Institute of

Technology School of Engineering. The locations of all

computers with semi-permanent locations are shown as well as

the proposed locations of the Universal Network Interface

Devices (UNIDs) . Finally, the computer links that will be

initially installed to the EJNIDs are also shown.

] 29

40 ft

WEI P"

I&AX11I

50 f A-.7ft b~d5 ft

130

Appendix

Structured Specification

This appendix contains the structured specification of

the software requirements for DELNET. First, the complete

set of data flow diagrams (Figures 1-32 in the main body) is

included. These are followed by the data dictionaries for

the high-level protocol, the host-to-host protocol, the

network protocol, and the link protocol.

I

]131

Tfnfoiaticxi rata Flow Mw Proces Data nocw rfre Tnfomiatc

Figureil I N mFE

132

Sy2sGtem iat

133gxt3c

I
~

Ii
~ I~-~

134

jIII

3,-I

1351

II

I I II I - - IEI

Figure 5 TrA-mnit 'File (4.4) EMI

136

Ne Ci cnfiuaticri

ID~p User lrpn_ sfer

Fimirtt6 Ccritro Scsicn(5.0) r

1 373

6.2
P"fil"C' Menu Selecticn.

Coleral. WOLReq Gxeml
Fk-t-%,ork
Intro

6.3
Provide File Transfer Procc<lze

File Transfer Procc<ijre f
6.1 Proci , a-msferM*r-

nw=Etted Detemdm Files
Help Peq Help Info

Rec ested List of Active Host
and JL %Tce NmT,-7. RciT

Netvurk WiMration

Provide
List of
Active list of Active

Hosts and Hosti-ariT a3lac-es
DNices

6.5
Sessuin Cbntrol Info Provide

Procedze Se--sicnCcntroIInfo
for lcgprv,:
Out ot
Nem"-k

Figure 7 Help Lber (6.0) EM

138

lbta Tramit Trttcd Data VEl

Figure 8 Host-to4lwt CntjExt Di-x-,rr

139

Caled Pet It ctto CalTed Wect_

callirgir~ 5ware os

Figir 9 X.25 level 3 Ccntext DIagan

140

Pr

41

Inl

sla 0

141

Sf

.~j / C

cc2

14

CalliCalh" Cal Ca "IkTdv,.,Jq t Node
lemel 3 PadQet 2.1 2.2 clZt

Dzcute Send
FhcketCallirg Ik),.t

Fh&et on.to
Ne

t

Calli'm p9st

Packet

(hiuff-rbde to

2 3 ;4
Baited Called Execute ERA
Node Faclet Rcuted PacJzt

Cal Called ucstLP tO Cal"r-
t wigowt lbst

Packe--

PLDcedLxe Error

% 2.5

from
Procedze

FnTx

MgLme 12 5zcute Callire Nod- Protocol (2) M

143

fintcni IVe

allin cnrv

2.1.3 ~ iu~Fa~

2.1.4cnfin rintbck t

Paclet lypedt(21 Il

144ir kcCI-

Cal lim Node
2.3.2 ij yo t

Tnvalid :r,"i"Mcl,
Pe Cali ,, Hwt

Data ow

Poited Called 23 1 Received caZjNode PRket D i r e CaILGxrvct Pad etCalled tbde 2.3.3Padat I W
Cal t

Of 11 Whqj kxle TIL-ehied
V,7-. .1tv Caynction Called Host -Fo c2llirL

tbst rg F56-zt

2.3.4
Uby3cw

Called I Iast
to Callim Ibs
rhta Fh&.cts

V(S)

P(P)

Figure 14 Emote Rated Called Node Pbcket (2-3) EM

145

Cal I ed I V-r, t to Cal IcdCall-d ibst CallifiT lk-t L
4.1 4.2 Ievl t

SO-Aboecute Packet
Called Host onto

Packet

Called Host
averviscr- -,
Packet

Called Ibi- to
4.3 Callirg Host tio .4 CallC<FIk)F.C

Ruited C--llirv,_ -11 -et level U 11,1dFzt
Node Echct bectite CalledTiost acr,

Ratcd
Callirg Node to Called

Picket Host

Error
pad-eT

Procedze Error 4.5
RemVer

flan
L'Irm--Ki.we

F4p. 15 bmte Called tk* Protocol (4) rn

146

Relayed Call

ReLT; Call
Aemptance
to callirg

Node

4.1.3
Lbdate

Called Ibde

Va=iab es

Trualid

4.1.4
r, Called Node Internipt

cajlea- -3 t 4 Ccnf iiFinticii-Phc et

led t
lrmmljpt

Called ftt
Imel'T Paclit 4.1.1

Detemdne
Called Pcst
Packt I pe

Called Node Clear
t "Ibst 4.1.5 Ccrf=,-. ticn- pa t

G3-if iim
Called Post

Ciear
povest

11-4e

4.1.6 Called bde Reset

Ccnf inn Gddizii it:Lcii PacOt
Called Fo. t

Reset
ReqLmt

Called Node- Restart
4.1.7 Cuifilil-utici Packef-

Gcr1f L-m
Called licst

Restart
Request

FiVze 16 amte czlled Ilost Phci et (4.1) EFD

147

Gilled rbib

4.3.2
Lltlm

Irmlid Called Node
to Called fb6t

cData Fk:wr

Routed Cal 4.3.1 RcceNode FhOm -ivud Tn=&g_
Deten-Ine call t Pelayed hrwmp

Cal hrC Node CaIlLpbo , zt
Packt lype 4.3.3

Called bst.

q? Of call

Called Node MM Callirr'-
N, Host & Cafred Nxt 'Ita Paclet

cexO-A 4.3.4 Called Nocb
wuxw

'I!Callarg, Fcst SLperv soryD'a t

tcj Called licst -7
Data Paciqet

Figze 17 amte Rated Callirt Nocie Pa6zt (4.3) EFD

148

Ilk~

4D4

aIv

14

9 gure 19. Nemurk Protoo Ccntey- Diagrm

150

T~isitted Packet

Figr 20 Ntork Protocol Owne-i EMD

IT
CII 1

~j

1 52

|1

if

-- .r

i~i;

-V
1

1 ~

PrmiyV(P
SScccl"- T-*
Pck-t- &-i7u-ce Lnfo

1.3.

Readv bylicnticn

1.4.3
Send Rcady2XR)

Paldy Status
ayj L-txact

-N(R)

RmTonse
avervi-sor. -Y- BusyRixticn ILL- _jrdicitim

S-Fime 1.4.1 1.4.2 1.4.4
Ples parse Scrld

S-rr-.re D:c -1 tl isMxnse Pe-pon &Uy SLse al3y

Ccntml ,M)d F\,tx-act.

Fie] d Blts

RC*ticn
BT-m4ai:

1.4.5 GLi td taon

Scnd
S-Fram Final Bit

(apct Lim

R,-jct N(R)

Figure 25 bmte S-rram Pcsportse (1.4) ll--D

156

1.5.3
Set

1.5.2 pondim
= -Bits awde Trnrisrniv.tod State

== SCICCW--rv ao-ge
Bits otu*% ,47

R SF

1.5.1
u-F W Pa-se
Respcr6e U-Frae 1.5.4 Link Stab-is

perxbmField State

I Bit

golm 26 axcute PeTm;e (1.5) E -

157

Reje-ti(xL
= 1

Rejec N(R)

Reset
V(S)

I-FkarrqN(R)
0- 4ver

Pm&, N(1.6.2 1.6.4
Flace

1= I-Fraw
b-sy N(R) v&kkw ?6n" n- in X.25 Link-

-Fd.,e 3 ?OCIZOIL QLXxle

-TArdaed I-Prane

1 6 5
IR C,37,.TTd sci, ;t

Rad et
for Y-25 Prunary

My)5n&cation 1.6.3 Lirk 2 1 t

&ARM
for PeaSCIO=for

State

Ready Indicatim

Figum 27 Mitkv Fmrmy WoumLicn Blocks (1.6) IFD

15 P

gi4

J 4 IR I a

159*

V(P)

Prinnrv
Fraw

3.3.1 3,3 3
Va Ii
I-FraTle I-Fr.-rr,

Packet Ccntr.)l
Ficid

Valid Pr -
1--Fhiw- L

Prinurv T-Fr7:o
CentroT-Ti(,Id -

Out--of-Savence 1--Frre Pbll Bit

3.3.2
Parse

I-Er.-up
Trm.vntted rlrimry--PkA-
level 3 Placy-et

Fig 29. bmite Pr I-Fraw Packet (3.3) rFD

160

h-rvCn f ie K. Wbot -n~Cnr 34 ~

3.4.13.4.
Parse P 161

DISUIA Rosixyr--e

MSC Gmura-d

LI-Fraw bdifi its Di
Camn-J- 3.5.1 3.5.2 Link t

Ibrso
U-Fra-e D Cmlle
G=qIT)d QxrmA

Gontrol bdifier
Field Bits SAMI UN

Trms-atted R&,T-aw-
&%511 ax M iT

3.5.4
set
L 0

Link
U-FraTe Pbll Bit

Figtre 31. D 3axe U-Frm.L- Camnd (3.5) rm

162

U

eT'I YV P)

Reset
V(S)

in 25
3.6.2 Urk

Ljdate

Prin
Etc

ZTSC

I Respmse

I-Fr" 3.6.5
FbIl Bit .00 &-alect

Packet
S-FraTe for X.25
Poll BE Irk

V-Fraie 3.6.3
PblI Bit S-t

p7R i
Bit

I-FraTe
Fbl I- Bft-

S-Frrv
Fb I I-B iFf- 3.6.b

to "la"s
Ru mt

Fip m 3 . -T Ij scxnbrv JnfcT".tjcn Blccks (2.6) EFD

163

DATA DICTIONARY

FOR HIGH-LEVEL PROTOCOLS

DATA ELEMENT NAME: ACTIVE-DEVICE-NAME
ALIASES: NONE
VALUES AND MEANINGS:

NAME OF A DEVICE THAT IS ATTACHED TO AN
ACTIVE HOST ON THE NETWJORK.

NOTES: NOS LAYFR

DATA ELEMENT NAME: ACTIVE-HOST-NAME
ALIASES: NONE

VALUFS AND MEANINGS:
NAME OF A HOST THAT IS ACTIVE ON THE
NETWORK .

NOTES: NOS LAYER

DATA ELEMENT NAME: FRROR-MESSAGF-FT
ALIASES: NONE
VALUES AND MEANINGS:

ERROR MESSAGE STATING WHY THE FTLE CANNOT
BE PROPERLY TRANSFERRED

NOTES: NOS LAYER

DATAFLOW NAME: FILE
ALIASES: NONE
COMPOSITION:

FILE = FILE-NAME
+ FILE-TYPE
4- FILF-LENGTF
+ {FILE-CHARACTER}

NOTES: APPLICATIONS LAYER

DATAFIOW NAME: FILE-BLOCK
ALIASES: NONE

COMPOSITION: FIT,E-P LOCK : 1l{FILE-C}lARACTER}]O24

NOTES: APPLICATIONS TAYER

164

DATA ELEMENT NAME: FILE-CHARACTER
ALIASES: NONE
VALUES AND 0IEANINGS:

ANY ASCII OR EBCDIC CHARACTER OR 8 BINARY
DIGITS

NOTES: APPLICATIONS LAYER

DATA ELEMENT NAME: FIL.E-DEST-DEVICE-NAME
ALIASES: NONE
VALUES AND MEANINGS:

NAME OF THE DEVICE TO WHICH THE FILE IS TO
BE TRANSFERRED. NAME MUST CORRESPOND TO
ONE OF THOSE IN THE LIST-OF-ACTIVE-HOSTS.

NOTES: NOS LAYER

DATA ELEMENT NAME: FILE-DEST-HOST-NAME
ALIASES: NONE

VALUES AND MEANINGS:
NAME OF THE HOST TO WHICH THE FILE IS TO
BE TRANSFERRED. NAME MUST CORRESPOND TO
ONE OF' THOSE IN THE LIST-OF-ACTIVE-HOSTS.

NOTES: NOS LAYER

DATA ELEMENT NAME: FILE-LENGTH
ALIASES: NONE
VALUES AND MEANINGS:

A 10-BIT FIELD THAT SPECIFIES THE FIlE
LENGTH IN FILE-BLOCKS AND THUS ALLW'S
FILE-LENGTHS UP TO 1K BLOCKS OR 1 MBYmE

NOTES: APPLICATIONS LAYER

DATA ELEMENT NAME: FILE-NAME
ALIASES: NONE
VALUES AND MEANINGS:

ANY CHARACTER STRING CHOSEN BY THE IUSFR TO
IDENTIFY THE FIl.E

NOTES: NOS l.AYFR

165

DATA ELEMENT NAME: FILF-SOURCE-DEVICE-NAME
ALIASES: NONE
VALUES AND MEANINGS:

NAME OF DEVICE THAT CONTAINS TH F I LE
B E TRANSFERRED. NAME MUST CORRESPOND T'P,
ONE IN THE LIST-OF-ACTIVE-DEVICE-IAMES.

NOTES: NOS LAYER

DATA ELEMENT NAME: FTIE-OOURCE-HIOST-NAME

ALIASES: NONEI
NAMEJF OFD HOT HA CNTIN TE IJ C'B

TRANSFERRED. NAME MUST CORRESPOND TO C)NE
IN THE LIST-OF-ACTIVE-HOSTS.

NOTES: NOS LAYER

DATA ELEMENT NAME: FILE-TRAN SEER-PROCEDURE
ALIASES: NONE
VALUES AND MEANINGS:

A SHORT EXPLANATION OF HO1- TO USE ThE;
NETW ORK El LF TRAN SFER COMMANIDI

NOTES: NOS LAYER

DATAFLOTV NAME., FILE-TRANSFER-PROCEDUIRE,-REDP
ALIASES: NONE
COMPOSITION:

FILEI:-TRAM SEER-PR\OCEDURE-RPQ
CENFRAL-INFO-PFCO
+ ",FI~f' TPA!N',SFER"

NOTES: NOS LAYER, APPLICATIONS LAYER

DATAFL(TJ NAME: ETLF-TRAN SEERMNESSACF
ALIASES: NONE
COMPOSITION:

RITE--TRAM SEER-MESSAGE =USER-ID +
[PILEF-TRAM SE E-RRED)--ESE;ACE,
I ERROR-MESSAGE-FT 1

FlE-TRAM SFERRFD-M'ESSACEF
[MODIFEl D-Fl E-NANEl
+ FILE-DEST-!OST-NAME

NOTES: NOS LAYER

166

DATA ELEMENT NAME: FILE-TYPE
ALIASES: NONE
VALUES AND MEANINGS:

A 3-BIT FIELD SHOWING I IEE ASCT I,
FB(CDIC, BINARY, ETC

NOTES: APPLICATIONS LAYER

DATAPLOIV NANE: GENERAL-INFO-REO
ALIASES: NONE
COM POSITION:

GENERAL-INFO-REQ J'N',VRE-D + ~LV
NOTES: NOS LAYER, APPLICATIONS LAYER

DATA ELEMENT NAME: GET-COMMAND
ALIASES: NONE
VALUES AND MEANINGS:

THE CHARACTER STRIN'G, "NOS,GE'T FILl"
NOTES: APPLICATIONS LAYER

DATAETOW NAME: GET-FIL-COMMAND
ALIASES: NONE
COMPOSITION:

GET-PIIF-COMMAN17 = USER-ID,
" GE.T-COMMATIT',
" FILE-NAMEF
+ EI IE-SOU PCF -POS'7-NATME
-4- EIIE- SOL!RPCF: -DEv ICE-NM
+ ElITEDP-F;TlT1OST-NArF
+ FIbE-DEPST-DEVICE'-NA!ME

NOTES: APPLICATIONS LAYER

DATA ELf-VMENT ?"IAME: GOODBYE,
AI ASFS : N\lONEF
VALUES AND, MEANINGS: "UJSER L.OGGED) OUTq OF NEiVOn"~l
NOTES: NOS LAYER

167

DATAFLOW NAME: HELP-INFORMATION
ThIASES: NONE
COMPOSITION:

HELP-INFORMATION
(MENU-SELECTION
I FILE-TRAN SFER-PROCEDURE
I LIST-OF-ACTIVE-DEVI CE-NAMES
I LOGOUT-INFO]

NOTES: NOS LAYER

DATAFLOW NAME: HOST-STRUCTURED-FILE
ALIASES: NONE
COMPOSITION:

HOST-STRUCTURED-FILE = MODIFIED-FILE-NAME
+ FILE-TYPE
+ FILE-LENGTH
+ {FILE-CHARACTER}

NOTES: APPLICATIONS LAYER

I ATAFLOU NAME: LIST-OF-ACTIVE-DEVICE-NAMES
ALIASES: NONE
COMPOSITION:

LIST-OF-ACTIVE-DEVICE-NAMES
[ACTIVE-DEVICE-NAME }

NOTES: NOS LAYER

DATAFLOW NAME: LIST-OF-ACTIVE-DE ICE-NAMES-REQ
ALIASES: NONE
COMPOSITION:

L I ST-OF-ACT IVE-DEVI CE-NAME S-REQ =
GENERAL-INFO-REQ
+ ",LIST ACTIVE DEVICES"

NOTES: NOS LAYER, APPLICATIONS LAYER

DATAELOU NAME: LIST-OF-ACTIVE-HOSTS
ALIASES: NONE
COMPOSITION:

LIST-OF-ACTIVE-HOSTS = fACTIVE-HOST-NAME]
NOTES: NOS 1,AY)RF.

168

DATAFLOW NAME: LOCAL-COMMAND
ALIASES: NONE
COMPOSITION:

LOCAL-COMMAND [VALID-LOCAL-OS-INPUT

I INVALID-INPUT]
NOTES: NOS LAYER

THE USER IS "LOCAL" TO THE HOST THAT HE
DESIGNATES WHEN HE SIGNS ONTO THE NETWORK,
NOT NECESSARILY THE ONE TO WHICH THE
TERMINAL IS CONNECTED.

DATA ELEMENT NAME: LOCAL-HOST-NAME
ALIASES: NONE
VALUES AND MEANINGS:

THE NAME OF THE HOST MACHINE TO WHICH THE
USER WISHES TO BE "LOCAL"

NOTES: NOS-LAYER

DATA ELEMENT NAME: LOCAL-RESPONSE
ALIASES: NONE

VALUES AND MEANINGS:
LOCAL OPERATING SYSTEM'S RESPONSE TO A
LOCAL INPUT

NOTEq: NOS LAYER

DATAFLOW NAME: LOGON-COMMAND
ALIASES: NONE
COMPOSITION:

LOGON-COMMAND NETWORK-ID
+ "LOGON"
+ (LOCAL-IOST-NAME)

NOTES: NOS LAYER

DATAFLOW NAME: LOGON-MESSAGE
ALIASES: NONE
COMPOSITION:

LOGON-MESSAGE = NETWORK-INTRODUCTION
+ LIST-OF-ACTIVE-HOSTS
+ (LOCAL-HOST-NAME)

NOTES: NOS LA FR

169

DATAFLOW NAME: LOGOUT-COMMAND
ALIASES: NONE
COMPOSITION:

LOGOUT-COMMAND = NETWORK-ID + "LOGOUT"
NOTES: NOS LAYER

DATAFLOW NAME: LOGOUT-INFO-REQ
ALIASES: NONE
COMPOSITION:

LOGOUT-INFO-REQ = GENERAL-INFO-REQ
+ ",LOGOUT PROCEDURE"

NOTES: NOS LAYER, APPLICATIONS LAYER

DATAFLOW NAME: LOGOUT-MESSAGE
ALIASES: NONE
COMPOSITION:

LOGOUT-MESSAGE = GOODBYE
+ LIST-OF-FILE-TRANSFERS

LIST-OF-FILE-TRANSFERS =
{F I LE-TRAN SFERRED-MESSAGE}

NOTES: NOS LAYER

DATAFLOW NAME: MENU-SELECTION
ALIASES: NONE
COMPOSITION:

MENU-SELECTION = USER-ID
+ NE WORK-COMMAND-SYNTAX
+ {ACTIVE-HOST-NAME
+ {ACTIVE-DEVICE-NAME}

NOTES: NOS LAYER

DATA ELEMENT NAME: MODIFIED-FILE-NAME
ALIASES: NONE
VALUES AND MEANINGS:

NAME GIVEN TO THE TRANSFERRED FILE. IT
WILL CORRESPOND TO FILE-NAME UNLESS
FILE-NAME IS TOO LONG OR CONTAINS ILLEGAL
CHARACTERS FOR THE HOST OPERATING SYSTEM
TO WHICH THE FILE WAS TRANSFERRED.

NOTES: NOS LAYER, APPLICATIONS LAYER

170

DATAFLOW NAME: NETWORK-COMMAND

ALIASES: NONE
COMPOSITION: NETWORK-COMMAND NETWORK-ID

+ CHARACTER-STRING

NOTES: NOS LAYER

DATA ELEMENT NAME: NETWORK-COMMAND-SYNTAX
ALIASES: NONE
VALUES AND MEANINGS:

SUMMARY OF THE NETWORK COMMANDS AVAILABLE
AND THEIR SYNTAXES

NOTES: NOS LAYER

DATA ELEMENT NAME: NETWORK-ID

ALIASES: NONE
VALUES AND MEANINGS: NETWORK-ID "NETWORK,"
NOTES: NOS LAYER

DATA ELEMENT NAME: NETORK-INTRODUCTION
ALIASES: NONE
VALUES AND MEANINGS:

A SHORT PARAGRAPH WELCOMING THE USER TO
THE NETWORK AND STATING HOW TO GET FURTHER
INFORMATION THROUGH THE GENERAL-INFO-PEQ.

NOTES: NOS LAYER

DATAFLOW NAME: NETWORK-RESPONSE
ALIASES: NONE
COMPOSITION:

NETWORK-RESPONSE = USER-ID
+ [TRANSMITTED-FILE-TRANSFER-MESSAGE

ITRAN SMITTED-LOGON-MESSAGE
I TRAN SMITTED-LOGOUT-MESSAGE
STRANSMITTED-HELP-INFORMATION]

NOTES: NOS LAYER

171

DATAFLOW NAME: NETWORK-STRUCTURED-FILE
ALIASES: NONE
COMPOSITION:

NETWORK-STRUCTURED-FILE FILE-NAME

+ FILE-TYPE
+ FILE-LENGTH
+ {FILE-BLOCK}

NOTES: APPLICATIONS LAYER

DATA ELEMENT NAME: PORT-NUMBER
ALIASES: NONE
VALUES AND MEANINGS:

IF THE HOST HAS MULTIPLE INPUT PORTS, THEN
THIS CORRESPONDS TO THE NUMBER OF THE PORT
THROUGH WHICH THE USER IS MAKING HIS
INPUTS TO THE HOST. IF THE HOST HAS ONLY
ONE INPUT PORT, THEN PORT-NUMBER IS
ASSIGNED THE VALUE "1".

NOTES: NOS LAYER, APPLICATIONS LAYER

DATAFLOW NAME: ROUTED-LOCAL-COMMAND
ALIASES: NONE
COMPOSITION:

ROUTED-LOCAL-COMMAND LOCAL-COMMAND
+ USER-ID

NOTES: NOS LAYER

DATAFLOW NAME: ROUTED-LOCAL-RESPONSE
ALIASES: NONE
COMPOSITION:

POUTED-LOCAL-RESPONSE LOCAL-RESPONSE
+ USER-ID

NOTES: NOS LAYER

DATA ELEMENT NAME: STORE-COMMAND
ALIASES: NONE
VALUES AND MEANINGS:

THE CHARACTER STRING, "NOS,STORE FILE"
NOTES: APPLICATIONS LAYER

172

DATAFLOW NAME: STORE-FILE-COMMAND
ALIASES: NONE
COMPOSITION:

STORE-FILE-COMMAND = USER-ID
+ STORE-COMMAND
+ FILE-DEST-DEVICE-NAME

NOTES: APPLICATIONS LAYER

DATA ELEMENT NAME: TRANSFER-COMMAND
ALIASES: NONE
VALUES AND MEANINGS:

THE CHARACTER STRING, ",TRANSFER FILE"
NOTES: NOS LAYER, APPLICATIONS LAYER

DATAFLOW NAME: TRANSMITTED-FILE-TRANSFER-COMMANiD
ALIASES: NONE
COMPOSITION:

TRANSMITTED-FILE-TRANSFER-COMAND
TRAN SEER-COMMAND
+ FILE-TRANSFER-FIELDS

FILE-TRANSFER-FIELDS =
FILE-NAME
" FILE-SOURCE-HOST-NAME
" FILE-SOURCE-DEVICE-NAME
" FILE-DEST-HOST-NAME
" FILE-DEST-DEVICE-NAME

NOTES: NOS LAYER, APPLICATIONS LAYER

DATAFLOW NAME: TRANSMITTED-HELP-REQUEST
ALIASES: NONE
COMPOSITION:

TRANSMITTED-HELP-REQUEST = USER-ID
+ [GENERAL-INFO-REQ

I SPECIFIC-IN FO-RE0]
SPECIFIC-INFO-REO

[FILE-TRANSFER-INFO-PEO
I LOGOUT-INFO-REQJ

FILE-TRANSFER-INFO-REO =
[F ILE-TRAN SEER-PROCEDURE-REQ
LIST-OF-ACTIVE-DEVICF-;AMES-PEQ]

NOTES: NOS LAYER, APPLICATIONS LAYER

173

DATAFLOW NAME: TRANSMITTED-NE'1WORK-COMMAND
ALIASES: NONE

COMPSITON:TRANSMITTED-NE~TW~ORK-COMMAND =USER-ID
+ [TRANSMITTED-FILE-TRANSFER-COMMAND

I TRANSMITTED-SESSION-CONTROL-COMMAND
TRANSMITTED-HELP-REQUEST)

NOTES: NOS LAYER

DATAFLOW NAME: TRAN SM ITTED-NE IWORK -STRUCTU RED-F II,F'
ALIASES: NONE
COMPOSITION:

TRANSMITTED-NETWORK-STRUCTURED-FILE
USER-ID
" FILE-DEST-HOST-NAME
+ FILE-DEST-DEVICE-NAME
" NE IWORK-STRUCTURED-FILF

NOTES: APPLICATIONS LAYER

DATAFLOW NAME: TRANSMITTED-SESSION-CONTROL-COMMAND
ALIASES: NONE
COMPOSITION: TRANSMITTED-SESSION-CONTROL-COMMAND

USER-ID
+ [LOGON-COMMAND

LOGOUT-COMMAND]
NOTES: NOS LAYER, APPLICATIONS LAYER

DATAFLOW NAME: USER-COMMAND
ALIASES: NONE
COMPOSITION: USER-COMMAND =[LOCAL-COMMAND

I NETWORK-COMMAND I
NOTES: NOS LAYER

DATA ELEMENT NAME: USER-HOST-NAME
ALIASES: NONE
VALUES AND MEANINGS:

NAME OF THE HOST THROUGH WHICH THE USER IS
MAKING HIS INPUTS TO THE NETWORK. NAME
MUST CORRESPOND TO ONE ON THE
LIST-OF-ACTIVE-HOSTS.

NOTES: NOS LAYFR, APPLICATIONS LAYER

174

p

DATAFLOW NAME: USER-ID
ALIASES: NONE
COMPOSITION:

USER-ID = USER-HOST-NAME + PORT-NUMBER
NOTES: NOS LAYER

DATAFLOW NAME: USER-RESPONSE
ALIASES: NONE
COMPOSITION:

USER-RESPONSE = [NETWORK-RESPONSE
I LOCAL- RE SPON SE]

NOTES:
NOS LAYER

DATA ELEMENT NAME: VALID-LOCAL-OS-INPUT
ALIASES: NONE
VALUES AND MEANINGS:

ANY VALID INPUT FOR THE OPERATING SYSTEM
OF THE HOST THAT THE USER IS SIGNED ONTO
ON THE NETWORK.

NOTES: NOS LAYER

175

FILE DEFINITIONS

FILE OR DATABASE NAME: COMMAND-ROUTING-TABLE

ALIASES: NONE
COMPOSITION:

COMMAND-ROUTING-TABLE =
{USER-ID

+ LOCAL-HOST-NAME}
ORGANIZATION: SEQUENTIAL BY USER-ID
NOTES: NOS LAYFR

FILE OR DATABASE NAME: FILE-TRANSFER-LOG
ALIASES: NONE
COMPOSITION:

FILE-TRANSFER-LOG =
fUSER ID

+ FILE-TRANSFER-FIELDS}
ORGANIZATION: PILE
NOTES: NOS LAYER

FILE OR DATABASE NAME: NETWORK-CONFIGURATION
ALIASES: NONE
COMPOSITION:

NETWORK-CONFIGURATION =
{ACTIVE-HOST-NAME

+ {ACTIVE-DEVICF-NAMEl}
ORGANIZATION:

ALPHABETICALLY KEYED FIRST ON
ACTIVE-HOST-NAME THEN ON
ACT IVE-DEV I CE-NAME

NOTES: NOS LAYER

176

PROCESS SPECIFICATIONS

PROCESS NAME: DETERMINE COMMAND TYPE
PROCESS NUMBER: 1.0

14 PROCESS DESCRIPTION:
If USER-COMMAND contains NETWORK-ID

then USER-COMMAND = NETWORK-COMMAND
otherwise USER-COMAND = LOCAL-COMMAND

PROCESS NAME: SEND COMMAND TO HOST wITH NOS
PROCESS NUMBER: 2.0
PROCESS DESCRIPTION:
Send NETWORK-COMMAND to NOS-FIOST using HOST-TO-HOST-PROTOCOL,

Set SOURCE-FIELD to USER-HOST-NAME
Set DEST-FI ELD to NOS-HOST-NAME
Set INFO-FIELD to NETWORK-COMMAND

PROCESS NAME: DETERMINE NE7,%ORK COMMAND TYPE
PROCESS NUMBER: 3.0
PROCESS DESCRIPTION:
If TRANSMITTED-NETORK-COMMAND has the following

COMMAND-FIELD,
Case 1 TRANSFER-COMMAND:

then TRANSMITTED-NETORK-COMMAND
TRANITTED-FI TEF-TRAN SEER-COMIMANID

Case 2 LOGON-COMMAND or LOGOUT-COMMAND:
then TRANSMITTED-NEWORK-COMMAND=

TRANIMTED-SESSION-COTROL-CON MANDlr
Case 3 GENERAL-INFO-PEO:

then TRANSMITTED-NEWhORK-COMMAND
TRANSMITTED-HELP-REQUEST

otherwise reject TRANISMITTED-N"EWhORK-COMMIAND)

PROCESS NAME: SEND GET-FIL--COMMAND TO FT.LF-SOUPCV-11OST
PROCESS NUMBER: 4.1
PROCESS DESCRI PT ION:
Fend (7ET-FILE-COMMAND to FILE-SOUPCE-IOST Uls 1fl

HOST-TO-HOST-PROTOCOL
Set SOURCE-FTF EJD to NOS-IIOST
Set DEST-FIFID to FILE-SOURCE-HOST
Set INFO-FT ELD to GET-FILE-CMMAND

177

PROCESS NAME: GET FILF FROM SOURCF-DEVICE
PROCESS NUMBER: 4.2

PROCESS DESCRIPTION:
Call FILE-FETCH-ROUTINE in the SOURCE-HOST-OS
Use FILE-NAME and FILE-SOURCE-DEVICE-NAME
from GET-FILE-COMMAND

PROCESS NAME: RESTRUCTURE FILE FOR NETWORK
PROCESS NUMBER: 4.3
PROCESS DESCRIPTION:
Copy FILE-TYPE into FILE-TYPE-FIELD
Convert FILE-LENGTH to FILE-LENGTH-IN-BYTES and copy into
FILE-LENGTH-FIELD

Divide FILE into FILE-BLOCKS and fill PARTIAL-LAST-FILE-
BLOCK with NULLS

PROCESS NAME: TRANSMIT FILE TO DEST HOST
PROCESS NUMBER: 4.4
PROCESS DESCRIPTION:
Send NETWORK-STRUCTURED-FILE to FILE-DEST-HOST using
HOST-TO-HOST-PROTOCOL
While there are FILE-BLOCKS remaining do

Set SOURCE-FIELD to FILE-SOURCE-HOST-NAME
Set DEST-FIELD to FILE-DEST-HOST-NAME
Set INFO-FIELD to FILE-BLOCK

PROCESS NAME: FESTRUCTURE FILE FOR DEST HOST
PROCESS NUMBER: A.5
PROCESS DESCRIPTION:
Set FILE-TYPE to FILE-TYPE-FIEID
Set FILE-LENGTH-IN-BYTES to FIIE-LENGTH-IN-BYTES-FIELD
Convert FILE-LENGT}H-IN-BYTES to FILE-LENGTH
Merge FILE-BLOCKS into HOST-STRUCTURED-FILE

PROCESS NAME: -if'<L r' ir. ON DEST DEVICE
PROCESS NUMBER: 4.6

PROCESS DESCRIPTI()N
Cal] FIIE-STORE-POTLJTJM r- the PEST-HOST-OS
Use FLE-NAMF and E I,-DET-DEVICF-NAME from STORE-COMAND
and store HOST-STPUCTIH ED-FIl

178

PROCESS NAME: DETERMINE SESSION COMMAND TYPE
PROCESS NUMBER: 5.1
PROCESS DESCRIPTION:
If TRAN SMITTED-SESSION-CONTROL-CON MAND contains "LOGON"

then TRAN SMITTE:D-SESSIO-CONTROL-COMMAND is a LOGC,,x1-COMMA1ND
otherwise TRANSNlITTED-SESSION-CONTROL-CnNPAND is a,

LOGOUT-COMMAND

PROCESS NAME: LOG USER ON NFT1NORK

PROCESS NUMBER: 5.24

If LOCAL-HOST-NAME is included in the LOGON-COMMAND
then enter LOCAL-HOST-NAME into the COMMAND-ROUTING-TABLE

using the USER-ID in the LOGON-COMMAND
otherwise access NETWORK-CONFIGURATION-TABLE using

USER-ID and set COMMAND-ROUTING-TABLE to USER-HOST-NAME
Access NETWORK-CONFIGURATION-TABLE and get LIST-OF-ACTIVE-

HOSTS
Output LOGON-MESSAGE

PROCESS NAME: LOG USER OFF NETWORK
PROCESS NUMBER: 5.3
PROCESS DESCRIPTION:
Rese t LOCAL-HOST-NAME in COMMAND-ROUTING-TABLE to USER-HOST-NIAME
Get LIST-OF-FIL-TRANSFER-MIESSAGES from FILE-TRANSFER-LOG
Output LOGOUT-MESSAGF

PROCESS NAME: DETERMINE HFLP-INFORIATTON REQUESTE-D
PROCESS NUMBER: r.
PROCESS DESCRIPTION4:
If TRANSMITTED-HELP-REQUEST contains the HELP-FIELD

Case 1 "FILE TRANSFER":
Then TRANSMITTED-HELP-REQUEScT is a FILE-TRANSFER-
PROCEDURE-REQ

Case 2 "LIST ACTIVE DEVICES":
Then TRANSMITTED-HELP-REQUEST is a lIST-ACTIVE-
DEVICE-NAMES-REQ

Case I "LOGOUT PROCEDUREE":
Thon TRAN SMITTE'FD-HIELP-REQLIEI ST i s a TOGOUT- INFO-PEQ

Otherwise, TRANSMITTED-HELP-REQUEST is a GENERAL,-
INFO-REQ

179

PROCESS NAME: PROVIDE GENERiAL NETWORK INTRODUCTION
PROCESS NUMBER: 6.2

PROCESS DESCRIPTION:

Output MENU-SELECTION and USER-ID

PROCESS NAME: PROVIDE PROCEDURE FOR TRANSFERRING FILES
PROCESS NUMBER: 6.3
PROCESS DESCRIPTION:
Output FILE-TRAISFER-PROCEDURE and USER-ID

PROCESS NAME: PROVIDE LIST-OF-ACTIVE-DEVICE-NAMES
PROCESS NUMBER: 6.4
PROCESS DESCRIPTION:
Access NEWhORK-CONFIGURATION-TABLE
Output LIST-OF-ACTIVE-DEVICE-NAMES and USER-ID

PROCESS NAME: PROVIDE PROCEDURE FOR LOGGING OFF NE'IWORY
PROCESS NUMBER: 6.5
PROCESS DESCRIPTION:
Output LOGOUT-INFO and USER-ID

PROCESS NAME: SEND MESSAGE TO USER-POST

PROCESS NUMBER: 7.0
PROCESS DESCPIPTION:
Send NETWORK-RESPONSE to USER-HOST usiro HOST-TO-HOST-
PROTOCOL

Set SOURCE-FIFLD to FILE:-DEST-HOST
Set DEST-FIELD to USER-HOST-NAME
Set INFO-FIELD to NETWORK-RESPONSE

PROCESS NAME: ROUTE LOCAL COMMAND
PROCESS NUMBER: F.0
")ROCESS DESCPIPTION:
Find LOCAL-HOST-NAME for USER from COMMAND-ROUTING-TABLF
Use HOST-TO-HOST-PROTOCOL to send LOCAL-COMMAND to

LOCAL-HOST
Set SOURCE-PTEID to USER-HOST-NAME
Set DEST-TFILD to L OCAL-HOST-NAME
Set INFO-FIELD to rOCAL-COnMAND

]80

PROCESS NAME: EXECUTE ROUTED-LOCAL-COmMAND
PROCESS NUMBER: 9.0
PROCESS DESCRIPTION:
Use LOCAL-OPERATING-SYSTEM to execute ROUTED-LOCAL-COMMAND

PROCESS NAME: ROUTE LOCAL RESPONSE
PROCESS NUMBER: 10.0
PROCESS DESCRIPTION:
Send LOCAL-RESPONSE to USER-HOST using HOST-TO-HOST-
PROTOCOL

Set SOURCE-FIELD to LOCAL-HOST-NAME
Set DEST-FIELD to USER-HOST-NAME
Set INFO-FIELD to LOCAL-RESPONSE

181

1 AD-AlGO 822 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO-ETC F/6 9/2m
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE AIR FORCE INSTITUTE --EYCIU)
MAR at W C HOBART

toUNCLASSIFIED AFIT/GE/EE/8M-3
3.IIEEEIEEI

IIEEIhEIIEIIEE
EIIIEIIIEEEI
IIIIIIumuuIuuu
EIIEEIIIIEEE-
EIIEEIIIEEEEE
mIIIIIIIIu

DATA DICTIONARY

FOR X.25 LEVEL 3 PROTOCOL

DATA ELEMENT NAME: CALL-CONNECTED-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (00001111)
NOTES: CALLING NODE AND HOST PROTOCOL LAYERS I
DATAFLOW NAME: CALL-CONNECTION-PACKET
ALIASES: NONE
COMPOSITION: CALL-CONNECTION-PACKET =

[CALL-CONNECTED-PACKET I CALLING-
NODE-CLEAR-INDICATION-PACKET]

NOTES: CALLING NODE PROTOCOL LAYER

DATA ELEMENT NAME: CALLED-HOST-INTERRUPT-CONFIRMATION-
PACKET

ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 1 0 0 1 1 1)
NOTES: CALLED HOST AND NODE PROTOCOL LAYER

DATAFLOW NAME: CALLED-HOST-LEVEL-3-PACKET
ALIASES: CALLED-HOST-TO-CALLED-NODE-LEVEL-3-PACKET
COMPOSITION: SEE ALIAS
NOTES: SEE ALIAS

DATAFLOW NAME: CALLED-HOST-SUPERVISORY-PACKET
ALIASES: NONE
COMPOSITION: CALLED-HOST-SUPERVISORY-PACKET =

[HOST-RR I HOST-RNR I HOST-REJ]
NOTES: CALLED NODE PROTOCOL LAYER

DATAFLOW NAME: CALLED-HOST-TO-CALLED-NODE-LEVEL-3-PACKET
ALIASES: CALLED-HOST-LEVEL-3-PACKET
COMPOSITION: CALLED-HOST-TO-CALLED-NODE-LEVEL-3-PACKET=

[CALL-ACCEPTED-PACKET I WINDOWED-CALLE--
HOST-TO-CALLING-HOST-DATA-PACKET I CALLED-
HOST-INTERRUPT-PACKET I CALLED-HOST-CLEAR-
REQUEST I CALLED-HOST-RESET-REQUEST I
CALLED-HOST-RESTART-REQUEST I CALLED-HOST-
SUPERVISORY-PACKET]

NOTES: OVERVIEW LAYER

182

..i, k _ •..,. ... ,j _

DATAFLOW NAME: CALLED-HOST-TO-CALLING-HOST-BUFFERED-
SEQUENCE

ALIASES: NONE
COMPOSITION: CALLED-HOST-TO-CALLING-HOST-BUFFERED-

SEQUENCE = {CALLED-HOST-TO-CALLING-HOST-
DATA-PACKET }

NOTES: CALLING HOST PROTOCOL LAYER

DATA ELEMENT NAME: CALLED-HOST-TO-CALLING-HOST-DATA
ALIASES: NONE
VALUES AND MEANINGS: ANY STRING OF BITS NEEDING TO BE TRANS-

MITTED FROM THE CALLED HOST TO THE
CALLING HOST

NOTES: OVERVIEW LAYER

DATAFLOW NAME: CALLED-HOST-TO-CALLING-HOST-DATA-
PACKET

ALIASES: NONE

COMPOSITION: CALLED-HOST-TO-CALLING-HOST-DATA-
PACKET = [CALLED-HOST-TO-CALLING-HOST-
CATEGORY-i-PACKET I CALLED-HOST-TO-
CALLING-HOST-CATEGORY-2-PACKET]

NOTES: CALLED HOST PROTOCOL LAYER

DATA ELEMENT NAME: CALLED-HOST-TO-CALLING-HOST-INTERRUPT-
DATA

ALIASES: NONE

VALUES AND MEANINGS: ANY DATA THAT MUST BE TRANSMITTED FROM
THE CALLED HOST TO THE CALLING HOST
WITHOUT USING THE LEVEL 3 FLOW CONTROL
THE DATA MUST NOT BE MORE THAN 8 BITS
IN LENGTH

NOTES: CALLED HOST PROTOCOL LAYER

DATAFLOW NAME: CALLED-HIOST-TO-CALLING-HOST-PACKET
ALIASES: NONE

COMPOSITION: CALLED-HOST-TO-CALLING-HOST-PACKET =

[CALLING-NODE-INTERRUPT-PACKET I CALL-
CONNECTED-PACKET I CALLING-NODE-
WINDOWED-CALLED-HOST-TO-CALLING-HOST-
DATA-PACKET]

NOTES: CALLING NODE PROTOCOL LAYER

183

DATA ELEMENT NAME: CALLED-NODE-CLEAR-CONFIRMATION-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 1 0 1 1 1)
NOTES: CALLED NODE AND HOST PROTOCOL LAYERS

DATAFLOW NAME: CALLED-NODE-CONFIRMATION-PACKET
ALIASES: NONE
COMPOSITION: CALLED-NODE-CONFIRMATION-PACKET =

[CALLED-NODE-INTERRUPT-CONFIRMATION-
PACKET I CALLED-NODE-CLEAR-
CONFIRMATION-PACKET I CALLED-NODE-
RESET-CONFIRMATION-PACKET I CALLED-
NODE-RESTART-CONFIRMATION-PACKETI

NOTES: CALLED NODE PROTOCOL LAYER

DATA ELEMENT NAME: CALLED-NODE-INTERRUPT-CONFIRMATION-
PACKET

ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 1 0 0 1 1 1)
NOTES: CALLED NODE AND HOST PROTOCOL LAYERS

DATA ELEMENT NAME: CALLED-NODE-INTERRUPT-PACKET
ALIASES: NONE
VALUES AND MEANINGS: CONTAINS UP TO 8 BITS OF DATA FROM THE

CALLING HOST TO THE CALLED HOST THAT
DOES NOT HAVE TO BE TRANSMITTED USING
THE LEVEL 3 FLOW CONTROL

NOTES: CALLED NODE PROTOCOL LAYER

DATAFLOW NAME: CALLED-NODE-LEVEL-3-PACKET
ALIASES: CALLED-NODE-TO-CALLING-NODE-LEVEL-3-

PACKET
COMPOSITION: SEE ALIAS
NOTES: SEE ALIAS

DATA ELEMENT NAME: CALLED-NODE-RESET-CONFIRMATION-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 1 1 1 1 1)
NOTES: CALLED HOST AND NODE PROTOCOL LAYERS

184

DATA ELEMENT NAME: CALLED-NODE-RESTART-CONFIRMATION-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (1 1 1 1 1 1 1 1)
NOTES: CALLED NODE AND HOST PROTOCOL LAYERS

DATAFLOW NAME: CALLED-NODE-SUPERVISORY-PACKET
ALIASES: NONE

COMPOSITION: CALLED-NODE-SUPERVISORY-PACKET-4
[NODE-RR I NODE-RNR I NODE-REJ] + P(R)

NOTES: CALLED NODE AND HOST PROTOCOLS

DATAFLOW NAME: CALLED-NODE-TO-CALLED-HOST-LEVEL-3-PACKET
ALIASES: NONE
COMPOSITION: CALLED-NODE-TO-CALLED-HOST-LEVEL-3 -PACKET=

[NODE-CALL-MAINTENANCE-PACKET I CALLED-
NODE-SUPERVISORY-PACKET I TRANSMITTED-
CALLING-HOST-TO-CALLED-HOST-DATA-PACKET
TRANSMITTED-CALLING-HOST-TO-CALLED-HOST-
NODE-INTERRUPT-PACKET]

NOTES: OVERVIEW LAYER

DATAFLOW NAME: CALLED-NODE-TO-CALLING-NODE-LEVEL-3-PACKET
ALIASES: CALLED-NODE-LEVEL-3-PACKET
COMPOSITION: CALLED-NODE-TO-CALLING-NODE-LEVEL-3-PACKET=

[CALLED-NODE-INTERRUPT-PACKET I CALL-
ACCEPTED-PACKET I CALLED-HOST-TO-CALLING-
HOST-DATA- PACKET I

NOTES: OVERVIEW LAYER

DATAFLOW NAME: CALLED-NODE-WINDOWED-CALLING-HOST-TO-
CALLED-HOST-DATA-PACKET

ALIASES: TRANSMITTED-CALLIN--HOST-TO-CALLED-
HOST-DATA-PACKET

COMPOSITION: SEE ALIAS
NOTES: SEE ALIAS

DATAFLOW NAME: CALLING-HOST-CONFIRMATION-PACKET
ALIASES: CALLING-HOST-INTERRUPT-CONFIRMATION-

PACKET
VALUES AND MEANINGS: SEE ALIAS
NOTES: SEE ALIAS

185

DATA ELEMENT NAME: CALLING-HOST-INTERRUPT-CONFIRMATION-PACKET
ALIASES: CALLING-HOST-CONFIRMATION-PACKET
VALUES AND MEANINGS: OCTET 3 =(00100111)
NOTES: CALLING, CALLED HOST AND NODE PROTOCOL

LAYERS

DATAFLOW NAME: CALLING-HOST-LEVEL-3-PACKET
ALIASES: CALLING-HOST-TO-CALLING-NODE-LEVEL-3-PACKET
COMPOSITION: CALLING-HOST-LEVEL-3-PACKET=

[HOST-CALL-SETUP-PACKET I WINDOWED-CALLING-
HOST-TO-CALLED-HOST-DATA-PACKET I CALLING-
HOST- INTERRUPT-CONFIRMATION-PACKETJ

NOTES: OVERVIEW LAYER

DATAFLOW NAME: CALLING-HOST-SUPERVISORY-PACKET
ALIASES: NONE
COMPOSITION: CALLING-HOST-SUPERVISORY-PACKET

[HOST-RR IHOST-RNR I HOST-REJI
NOTES: CALLING NODE PROTOCOL LAYER

DATAFLOW NAME: CALLING-HOST-TO-CALLED-HOST-BUFFERED-
SEQUENCE

ALIASES: NONE
COMPOSITION: CALLING-HOST-TO-CALLED-HOST-BUFFERED-

SEQUENCE = 11CALLED-HOST-TO-CALLING-
HOST-DATA- PACKET I

NOTES: CALLED HOST PROTOCOL LAYER

DATA ELEMENT NAME: CALLING-HOST-TO-CALLED-HIOST-DATA
ALIASES: NONE
VALUES AND MEANINGS: ANY STRING OF BITS NEEDING TO BE TRANS-

MITTED FROM THE CALLING HOST TO THE CALLED
HOST

NOTES: OVERVIEW LAYER

*DATAFLOW NAME: CALLING-HOST-TO-CALLED-HOST-DATA-PACKET
*ALIASES: NONE

COMPOSITION: CALLING-HOST-TO-CALLED-HOST-DATA-PACKET=
[CALLING-HOST-TO-CALLED-HOST-CATEGORY--

PACKET I CALLING-HOST-TO-CALLED-HOST-
CATEGORY-2-PACKET]

NOTES: CALLING HOST PROTOCOL LAYER

186

DATA ELEMENT NAME: CALLING-HOST-TO-CALLED-HOST-INTERRUPT-DATA
ALIASES: NONE
VALUES AND MEANINGS: ANY DATA THAT MUST BE TRANSMITTED

BETWEEN HOSTS WITHOUT USING THE FLOW
CONTROL MECHANISM. DATA LENGTH MUST
BE LESS THAN OR EQUAL TO 8 BITS.

NOTES: CALLING HOST PROTOCOL LAYER

DATAFLOW NAME: CALLING-HOST-TO-CALLED-HOST-PACKET
ALIASES: NONE
COMPOSITION: CALLING-HOST-TO-CALLED-HOST-PACKET =

[CALLED-NODE-INTERRUPT-PACKET I
INCOMING-CALL-PACKET I CALLED-NODE-
WINDOWED-CALLING-HOST-TO-CALLED-HOST-
DATA-PACKET I CALLED-NODE-
SUPERVISORY-PACKET]

NOTES: CALLED NODE PROTOCOL LAYER

DATAFLOW NAME: CALLING-HOST-TO-CALLING-NODE-LEVEL-3-PACKET
ALIASES: CALLING-HOST-LEVEL-3-PACKET
COMPOSITION: SEE ALIAS
NOTES: SEE ALIAS

DATA ELEMENT NAME: CALLING-NODE-CLEAR-CONFIRMATION-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 1 0 1 1 1)
NOTES: CALLING NODE AND HOST PROTOCOL LAYERS

DATA ELEMENT NAME: CALLING-NODE-CLEAR-INDICATION-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (00010011)
NOTES: CALLING NODE PROTOCOL LAYER

DATAFLOW NAME: CALLING-NODE-CONFIRMATION-PACKET
ALIASES: NONE
COMPOSITION: CALLING-NODE-CONFIRMATION-PACKET

ICALLING-NODE-INTERRUPT-CONFIRMATION-
PACKET I CALLING-NODE-CLEAR-
CONFIRMATION-PACKET I CALLING-NODE-
RESET-CONFIRMATION-PACKET I CALLING-
NODE-RESTART-CONFIRMATION-PACKET]

NOTES: CALLING NODE PROTOCOL LAYER

DATA ELEMENT NAME: CALLING-NODE-INTERRUPT-CONFIRMATION-
PACKET

ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 1 0 0 1 1 1)
NOTES: CALLING HOST AND NODE PROTOCOL LAYERS

187

DATA ELEMENT NAME: CALLING-NODE-INTERRUPT-PACKET
ALIASES: NONE
VALUES AND MEANINGS: CONTAINS UP TO 8 BITS OF DATA FROM THE

CALLED HOST TO THE CALLING HOST THAT
DOES NOT HAVE TO BE TRANSMITTED USING
THE LEVEL 3 FLOW CONTROL

NOTES: CALLING NODE PROTOCOL LAYER

DATAFLOW NAME: CALLING-NODE-LEVEL-3-PACKET
ALIASES: CALLING-NODE-TO-CALLED-NODE-LEVEL-3-

PACKET
COMPOSITION: SEE ALIAS
NOTES: SEE ALIAS

DATA ELEMENT NAME: CALLING-NODE-RESET-CONFIRMATION-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 1 1 1 1 1)
NOTES: CALLING NODE AND HOST PROTOCOL LAYERS

DATA ELEMENT NAME: CALLING-NODE-RESTART-CONFIRMATION-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (1 1 1 1 1 1 1 1)
NOTES: CALLING HOST AND NODE PROTOCOL LAYERS

DATAFLOW NAME: CALLING-NODE-SUPERVISORY-PACKET
ALIASES: NONE
COMPOSITION: CALLING-NODE-SUPERVISORY-PACKET =

[NODE-RR I NODE-RNR I NODE-REJ] + P(R)
NOTES: CALLING HOST PROTOCOL LAYER

DATAFLOW NAME: CALLING-NODE-TO-CALLED-NODE-LEVEL-3-PACKET
ALIASES: CALLING-NODE-LEVEL-3-PACKET
COMPOSITION: CALLING-NODE-TO-CALLED-NODE-LEVEL-3-PACKET=

[CALLING-NODE-INTERRUPT-PACKET I INCOMING-
CALL-PACKET I CALLING-HOST-TO-CALLED-HOST-
DATA-PACKET]

NOTES: OVERVIEW LAYER

188

DATAFLOW NAME: CALLING-NODE-TO-CALLED-NODE-PACKET
ALIASES: NONE
COMPOSITION: CALL ING-NODE-TO-CALLED-NODE-PACKET=

I CALLING-NODE- INTERRUPT-PACKET I
INCOMING-CALL-PACKET I CALLING-HOST-
TO-CALLED-HOST-DATA-PACKETI

NOTES: CALLING NODE PROTOCOL LAYER

DATAFLOW NAME: CALLING-NODE-TO-CALLING--HOST-LEVEL-3 -PACKET
ALIASES: NONE
COMPOSITION: CALLING-NODE-TO-CALLING-HOST-LEVEL-3 -PACKET

[CALLING-NODE-CONFlRMATITON-PACKET I CALLED-
HOST-CALLING-HOST-PACKET I ERROR-RECOVERY-
PACKE TI

NOTES: OVERVIEW LAYER

DATAFLOW NAME: CALLING-NODE-WVINDOWED-CALLED-HOST-TO-
CALLING-HOST-DATA-PACKET

ALIASES: TRANSMITTED-CALLED-HOST-TO-CALLING-
HOST-DATA-PACKET

COMPOSITION: SEE ALIAS
NOTES: SEE ALIAS

DATAFLOW NAME: DATA
ALIASES: NONE
COMPOSITION: DATA=[CALLING-HOST-TO-CALLED-HOST-DATA

I CALLED-HOST-TO-CALLING-HOST-DATAI

NOTES: CONTEXT LAYER

DATA ELEMENT NAME: ERROR-RECOVERY-PACKET
ALIASES: RESTART-INDICATION-PACKET
VALUES AND MEANINGS: SEE ALIAS
NOTES: SEE ALIAS

DATAFLOW NAME: HOST-CALL-MAINTENANCE-PACKET
ALIASES: NONE
COMPOSITION: HOST-CALL-MAINTENANCE-PACKET

[CALL-ACCEPTED-PACKET I RESET-REQUEST-
PACKET I RESTART-REQUEST-PACKET
CLEAR-REQUEST-PACKET)

NOTES: CALLED HOST PROTOCOL LAYER

189

DATAFLOW NAME: HOST-CALL-SETUP-PACKET
ALIASES: NONE

COMPOSITION: HOST-CALL-SETUP-PACKET = [CALL-REQUEST-
PACKET I RESET-REQUEST-PACKET I RESTART-
REQUEST-PACKET I CLEAR-REQUEST-PACKET]

NOTES: CALLING HOST PROTOCOL LAYER

DATA ELEMENT NAME: HOST-REJ
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (XXX01001)
NOTES: CALLING, CALLED HOST PROTOCOL LAYERS

DATA ELEMENT NAME: HOST-RNR
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (XXX00101)
NOTES: CALLING, CALLED HOST PROTOCOL LAYERS

DATA ELEMENT NAME: HOST-RR
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (XXX00001)
NOTES: CALLING, CALLED HOST PROTOCOL LAYERS

DATA ELEMENT NAME: INCOMING-CALL-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 0 1 0 1 1)
NOTES: CALLING, CALLED NODE PROTOCOL LAYERS

DATA ELEMENT NAME: LAST-PACKET-BIT
ALIASES: NONE
VALUES AND MEANINGS: BIT 5 OF OCTET 3 IS SET TO 0
NOTES: CALLING, CALLED HOST PROTOCOL LAYERS

DATA ELEMENT NAME: LOCAL-PROCEDURE-ERROR
ALIASES: NONE
VALUES AND MEANINGS: AN ERROR CAN BE CAUSED BY AN INVALID

CALLING-HOST-LEVEL-3-PACKET OR AN
INVALID CALLED-NODE-LEVEL-3-PACKET
ALSO, ERRORS CAN OCCUR WHEN THE
PACKET RECEIVED IS ILLEGAL FOR THE
CURRENT STATE OF THE CALLING NODE

NOTES: CALLING NODE PRTOCOL LAYER

190

DATA ELEMENT NAME: MORE-DATA-BIT
ALIASES: NONE

VALUES AND MEANINGS: BIT 5 OF OCTET 3 IS SET TO 1
NOTES: CALLING, CALLED HOST PROTOCOL LAYERS

DATAFLOW NAME: NODE-CALL-MAINTENANCE-PACKET
ALIASES: NONE
COMPOSITION: NODE-CALL-MAINTENANCE-PACKET =

[RELAYED-INCOMING-CALL-PACKET I
CALLED-NODE-CLEAR-INDICATION-PACKETI
CALLED-NODE-RESET-INDICATION-PACKET I
CALLED-NODE-RESTART-INDICATION-PACKETI
CALLED-NODE-CLEAR-CONFIRMATION-PACKETI
CALLED-NODE-RESET-CONFIRMATION-PACKETI
CALLED-NODE-RESTART-CONFIRMATION-
PACKET I CALLED-NODE-INTERRUPT-
CONFIRMATION-PACKET]

NOTES: CALLED HOST PROTOCOL LAYER

DATAFLOW NAME: NODE-CALL-SETUP-PACKET
ALIASES: NONE
COMPOSITION: NODE-CALL-SETUP-PACKET =

[CALL-CONNECTED-PACKET NODE-CLEAR-
INDICATION-PACKET I CALLING-NODE-
CLEAR-CONFIRMATION-PACKET I CALLING-
NODE-RESET-CONFIRMATION-PACKET I
CALLING-NODE-RESTART-CONFIRMATION-
PACKET I CALLING-NODE-RESET-
INDICATION-PACKET I CALLING-NODE-
RESTART-INDICATION-PACKET]

NOTES: CALLING HOST PROTOCOL LAYER

DATA ELEMENT NAME: NODE-INTERRUPT-IDENTIFIER

ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (00100011)

NOTES: CALLING, CALLED HOST PROTOCOL LAYERS

DATA ELEMENT NAME: PROCEDURE ERROR
ALIASES: NONE
VALUES AND MEANINGS: AN ERROR CAN BE CAUSED BY AN INVALID

CALLED-HOST-LEVEL-3-PACKET OR AN
INVALID CALLING-NODE-LEVEL-3-PACKET.
ALSO, ERRORS CAN OCCUR WHEN THE
PACKET RECEIVED IS ILLEGAL FOR THE
CURRENT STATE OF THE CALLED NODE.

NOTES: CALLED NODE PROTOCOL LAYER

191

DATA ELEMENT NAME: P(R)
ALIASES: PACKET-RECEIVE-NUMBER
VALUES AND MEANINGS: BITS 8,7,6 OF OCTET 3 IN DATA AND

SUPERVISORY PACKETS
NOTES: CALLING, CALLED NODE AND HOST PROTOCOLS

DATA ELEMENT NAME: P(S)
ALIASES: PACKET-SEND-NUMBER
VALUES AND MEANINGS: BITS 4,3,2 OF OCTET 3 IN DATA AID

SUPERVISORY PACKETS
NOTES: CALLING, CALLED NODE AND HOST PROTOCOLS

DATA ELEMENT NAME: QUEUED-CALLED-HOST-TO-CALLING-HOST-
DATA-PACKET

ALIASES: NONE
VALUES AND MEANINGS: THIS IS A CALLED-HOST-TO-CALLING-HOST-

DATA-PACKET THAT HAS BEEN PLACED IN
THE TRANSMISSION QUEUE TO BE SENT TO
THE CALLED NODE

NOTES: CALLED HOST PROTOCOL LAYER

DATA ELEMENT NAME: QUEUED-CALLING-HOST-TO-CALLED-HOST-DATA-
PACKET

ALIASES: NONE
VALUES AND MEANINGS: THIS IS A CALLING-HOST-TO-CALLED-HOST-DATA-

PACKET THAT HAS BEEN PLACED IN THE
TRANSMISSION QUEUE TO BE SENT TO THE
CALLING NODE

NOTES: CALLING HOST PROTOCOL LAYER

DATA ELEMENT NAME: RECEIVED-CALL-ACCEPTED-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (00001111)
NOTES: CALLING, CALLED NODE PROTOCOL LAYERS

DATA ELEMENT NAME: RECEIVED-CALL-REQUEST-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 0 1 0 1 1)
NOTES: CALLING HOST AND NODE PROTOCOL LAYERS

192

DATA ELEMENT NAME: RECEIVED-CAT,TPD iioST-CLEAR-REQUEST
ALIASES:
VALUES AND M"_'-INGS: OCTET 3 = (0 0 0 1 0 0 1 1)
NOTES: CALLED NODE AND HOST PROTOCOL LAYERS

DATA ELEMENT NAME: RECEIVED-CALLED-HOST-INTERRUPT-PACKET
ALIASES: NONE
VALUES AND MEANINGS: ANY STRING OF UP TO 8 BITS THAT IS

TRANSMITTED FROM THE CALLED HOST TO
THE CALLING HOST WITHOUT USING LEVEL
3 FLOW CONTROL

NOTES: CALLING NODE PROTOCOL LAYER

DATA ELEMENT NAME: RECEIVED-CALLED-HOST-RESET-REQUEST
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 1 1 0 1 1)
NOTES: CALLED NODE AND HOST PROTOCOL LAYERS

DATA ELEMENT NAME: RECEIVED-CALLED-HOST-RESTART-REQUEST
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 (1 1 1 1 0 1 1)
NOTES: CALLED HOST AND NODE PROTOCOL LAYERS

DATA ELEMENT NAME: PECEIVED-CALLED-HOST-TO-CALLING-HOST-
DATA-PACKET

ALIASES: NONE
VALUES AND MEANINGS: UP TO 128 BYTES OF DATA FROM THE

CALLED HOST TO THE CALLING HOST
NOTES: CALLING NODE PROTOCOL LAYER

DATA ELEMENT NAME: RECEIVED-CALLED-NODE-INTERRUPT-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (00100011)

INTERRUPT DATA IS ANY STRING OF UP TO
8 BITS THAT IS TRANSMITTED FROM THE
CALLED HOST TO THE CALLING HOST

NOTES: CALLING NODE PROTOCOL LAYER

193

I

DATA ELEMENT NAME: RECEIVED-CALLING-HOST-CLEAR-REQUEST-
PACKET

ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 1 0 0 1 1)
NOTES: CALLING HOST AND NODE LAYERS

DATA ELEMENT NAME: RECEIVED-CALLING-HOST-INTERRUPT-PACKET
ALIASES: NONE
VALUES AND MEANINGS: ANY STRING OF UP TO 8 BITS THAT IS

TRANSMITTED FROM THE CALLING HOST TO
THE CALLED HOST WITHOUT USING LEVEL
3 FLOW CONTROL

NOTES: CALLING NODE PROTOCOL LAYER

DATA ELEMENT NAME: RECEIVED-CALLING-HOST-RESET -REQUEST
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 1 1 0 1 1)
NOTES: CALLING HOST AND NODE PROTOCOL LAYERS

DATA ELEMENT NAME: RECEIVED-CALLING-HOST-RESTART-REQUEST-

PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (1 1 1 1 1 0 1 1)
NOTES: CALLING HOST AND NODE PROTOCOL LAYERS

DATA ELEMENT NAME: RECEIVED-CALLING-HOST-TO-CALLED-HOST-

DATA-PACKET
ALIASES: NONE
VALUES AND MEANINGS: UP TO 128 BYTES OF DATA FROM THE

CALLING HOST TO THE CALLED HOST
NOTES: CALLED NODE PROTOCOL LAYER

DATA ELEMENT NAME: RECEIVED-CALLING-NODE-INTERRUPT-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 1 0 0 0 1 1)
NOTES: CALLED NODE PROTOCOL LAYER

DATA ELEMENT NAME: RECEIVED-INCOMING-CALL-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 0 1 0 1 1)
NOTES: CALLED NODE PROTOCOL LAYER

194

DATAFLOW NAME: RECEIVED-WINDOWED-CALLED-IIOST-TO-
CALLING-HOST-DATA-PACKET

ALIASES: NONE

COMPOSITION: RECEIVED-WINDOWED-CALLED-IIOST-TO-
CALLING-HOST-DATA-PACKET = P(R) + P(S)
+ CALLED-HOST-TO-CALLING-HOST-DATA

NOTES: CALLED NODE PROTOCOL LAYER

DATAFLOW NAME: RECEIVED-WINDOWED-CALLING-HOST-TO-
CALLED-HOST-DATA-PACKET

ALIASES: NONE
COMPOSITION: RECEIVED-WINDOWED-CALLING-HOST-TO-

CALLED-HOST-DATA-PACKET =
P(R) + P(S) + CALLING-HOST-TO-CALLED-
HOST-DATA

NOTES: CALLING NODE PROTOCOL LAYER

DATA ELEMENT NAME: RELAYED-CALL-ACCEPTANCE-PACKET
ALIASES: NONE

VALUES AND MEANINGS: OCTET 3 = (0 0 0 0 1 1 1 1)

NOTES: CALLED NODE PROTOCOL LAYER

DATA ELEMENT NAME: RELAYED-INCOMING-CALL-PACKET
ALIASES: NONE
VALUES AND MEANINGS: OCTET 3 = (0 0 0 0 1 0 1 1)
NOTES: CALLED NODE AND HOST PROTOCOL LAYERS

DATA ELEMENT NAME: RESTART-INDICATION-PACKET

ALIASES: ERROR-RECOVERY-PACKET
VALUES AND MEANINGS: OCTET 3 = (1 1 1 1 1 0 1 1)

NOTES: CALLING HOST AND NODE LAYER

DATAFLOW NAME: ROUTED-CALLED-NODE-PACKET

ALIASES: ROUTED-CALLED-NODE-TO-CALLING-NODE-
LEVEL-3-PACKET

COMPOSITION: SEE ALIAS

NOTES: SEE ALIAS

195

DATAFLOW NAME: ROUTED-CALLED-NODE-TO-CALLING-NODE-LEVEL-
3-PACKET

ALIASES: ROUTED-CALLED-NODE-PACKET
COMPOSITION: ROUTED-CALLED-NODE-TO-CALLING-NODE-LEVEL-

3-PACKET = IRECEIVED-CALLED-NODE-
INTERRUPT-PACKET I RECEIVED-CALL-ACCEPTED-
PACKET I RECEIVED-CALLED-HIOST-TO-CALLING-
HOST-DATA-PACKETI

NOTES: OVERVIEW LAYER

DATAF'LOW NAME: ROUTED-CALLING-NODE-PACKET
ALIASES: ROUTED-CALLING-NODE-TO-CALLED-NODE-

LEVEL-3 -PACKET
COMPOSITION: SEE ALIAS
NOTES: SEE ALIAS

DATAFLOW NAME: ROUTED-CALLING-NODE-TO-CALLED-NODE-LEVEL-
3-PACKET

ALIASES: ROUTED-CALLING-NODE-PACKET
COMPOSITION: ROUTED-CALLING-NODE-TO-CALLED-NODE-LEVEL-

3-PACKET =[RECEIVED-CALLING-NODE-LEVEL-

3-PACKET IRECEIVED-INCOMING-CALL-PACKET
RECEIVED-CALLING-HOST-TO-CALLED-HIOST-DATA-
PACKET]1

NOTES: OVERVIEW LAYER

DATAFLOW NAME: TRANSMITTED-CALLED-HOST-TO-CALLING-HOST-
CATEr-ORY-l -PACKET

ALIASES: NONE
COMPOSITION: TRANSMITTED-CALLED-H]OST-TO-CALLING-HJOST-

CATEGORY-i-PACKET = LAST-PACKET-BIT +
CALLED-HOST-TO-CALLING-H]OST-DATA-PACKET

NOTES: CALLING HOST PROTOCOL LAYER

DATAFLOW NAME: TRANSMITTED-CALLED-HIOST-TO-CALLING-HIOST-
CATEGORY-2-PACKET

ALIASES: NONE
COMPOSITION: TRANSMITTED-CALLED-HIOST-TO-CALLING-HOST-

CATEGORY-2-PACKET = MORE-DATA-BIT +
CALLED-HIOST-TO-CALLING-HOST-DATA-PACKET

NOTES: CALLING HOST PROTOCOL LAYER

196

DATAFLOW NAME: TRANSMITTED-CALLED-HOST-TO-CALLING-HOST-
COMPLETE-PACKET-SEQUENCE

ALIASES: NONE
COMPOSITION: TRANSMITTED-CALLED-HOST-TO-CALLING-HOST-

COMPLETE-PACKET-SEQUENCE = CALLED-HOST-TO-
CALLING-HOST-BUFFERED-SEQUENCE +
TRANSMITTED-CALLED-HOST-TO-CALLING-HOST-
CATEGORY-i-PACKET

NOTES: CALLING HOST PROTOCOL LAYER

DATA ELEMENT NAME: TRANSMITTED-CALLED-HOST-TO-CALLING-HOST-
DATA

ALIASES: NONE
VALUES AND MEANINGS: ANY STRING OF BITS THAT HAS BEEN TRANS-

MITTED FROM THE CALLED HOST TO THE
CALLING HOST

NOTES: OVERVIEW LAYER

DATAFLOW NAME: TRANSMITTED-CALLED-HOST-TO-CALLING-HOST-
DATA-PACKET

ALIASES: NONE
COMPOSITION: TRANSMITTED-CALLED-HOST-TO-CALLING-IIOST-

DATA-PACKET = [TRANSMITTED-CALLED-HOST-TO-
CALLING-HOST-CATEGORY-I-PACKET I
TRANSMITTED-CALLED-HOST-TO-CALLING-HOST-
CATEGORY-2-PACKET]

NOTES: CALLING HOST PROTOCOL LAYER

DATA ELEMENT NAME: TRANSMITTED-CALLED-HOST-TO-CALLING-HOST-
INTERRUPT-DATA

ALIASES: NONE
VALUES AND MEANINGS: ANY STRING OF 8 BITS THAT HAS BEEN

TRANSMITTED FROM THE CALLED HOST TO
THE CALLING HOST WITHOUT USING THE
LEVEL 3 FLOW CONTROL MECHANISM

NOTES: CALLING HOST PROTOCOL LAYER

DATAFLOW NAME: TRANSMITTED-CALLED-HOST-TO-CALLING-HOST-
NODE-INTERRUPT-PACKET

ALIASES: NONE
COMPOSITION: TRANSMITTED-CALLED-HOST-TO-CALLING-HOST-

NODE-INTERRUPT-PACKET = NODE-INTERRUPT-
IDENTIFIER + TRANSMITTED-CALLED-HOST-TO-
CALLING-HOST-INTERRUPT-DATA

NOTES: CALLING HOST PROTOCOL LAYER

197

DATAFLOW NAME: TRANSMITTED-CALLING-HOST-TO-CALLED-
HOST-CATEGORY-i -PACKET

ALIASES: NONE
COMPOSITION: TRANSMITTED-CALLING-HOSTTO-CALLED-

HOST-CATEGORY-i-PACKET =LAST-PACKET-
BIT + CALLING-HOST-TO-CALLED-HOST-
DATA-PACKET

NOTES: CALLED HOST PROTOCOL LAYER

DATAFLOW NAME: TRANSMITTED-CALLING-IOSTTO-CALLED-

HOST-CATEGORY-2-PACKET
ALIASES: NONE
COMPOSITION: TRANSMITTED-CALLING-HOST-TO-CALLED-

HOST-CATEGORY-2-PACKET = MORE-DATA-BIT
+ CALLING-HOST-TO-CALLED-HOST-DATA-
PACKET

NOTES: CALLED HOST PROTOCOL LAYER

DATAFLOW NAME: TRANSMITTED-CALLING-HOST-TO-CALLED-
HOST-COMPLETE-PACKET-SEQUENCE

ALIASES: NONE
COMPOSITION: TRANC-MITTED-CALLING-HOST-TO-CALLED-

HOST-COMPLETE-PACKET-SEQUENCE =
CALLING-HOST-TO-CALLED-HIOST-BUFFERED-
SEQUENCE + TRANSMITTED-CALLING-HOST-
TO-CAL LED-HOST-CATEGORY-i -PACKET

NOTES: CALLED HOST PROTOCOL LAYER

DATA ELEMENT NAME: TRAN SMITTED-CALLING-HOST-TO-CALLED-HOST-
DATA

ALIASES: NONE
VALUES AND MEANINGS: ANY STRING OF BITS THAT HAS BEEN TRANS-

MITTED FROM THE CALLING HOST TO THE
CALLED HOST

NOTES: OVERVIEW LAYER

DATAFLOW NAME: TRANSMITTED-CALLING-HOST-TO-CALLED-
HOST-DATA-PACKET

ALIASES: NONE
COMPOSITION: TRANSMITTED-CALLING-HOST-TO-CALLED-

HOST-DATA-PACKET = [TRANSMITTED-
CALLING-HOST-TO-CALLED-HOST-CATEGORY -
I-PACKET I TRANSMITTED-CALLING-HOST-
TO-CALLED-HOST-CATEGORY -2 -PA(CKETI

NOTES: CALLED HOST PROTOCOL LAYER

198

DATA ELEMENT NAME: TRANSMITTED-CALLING-HOST-TO-CALLED-

HOST- INTERRUPT-DATA
ALIASES: NONE
VALUES AND MEANINGS: ANY STRING OF 8 BITS THAT HAS BEEN

TRANSMITTED FROM THE CALLING HOST
TO THE CALLED HOST WITHOUT USING
THE LEVEL 3 FLOW CONTROL

NOTES: CALLED HOST PROTOCOL LAYER

DATAFLOW NAME: TRANSMITTED-CALLING-HOST-TO-CALLED-
HOST-NODE-INTERRUPT-PACKET

ALIASES: NONE
COMPOSITION: TRANSMITTED-CALLING-HOST-TO-CALLED-

HOST-NODE-INTERRUPT-PACKET = NODE-

INTERRUPT-IDENTIFIER + TRANSMITTED-
CALLING-HOST-TO-CALLED-HOST- INTERRUPT-
DATA

NOTES: CALLED HOST PROTOCOL LAYER

DATAFLOW NAME: TRANSMITTED-DATA
ALIASES: NONE
COMPOSITION: TRANSMITTED-DATA=

[TRANSMITTED-CALLING-IHOST-TO-CALLED-HOST-
DATA I TRANSMITTED-CALLED-HOST-TO-CALLING-
HlOST-DATA]

NOTES: CONTEXT LAYER

DATAFLOW NAME: WINDOWED-CALLED-HOST-TO-CALLING-IOST
DATA-PACKET

ALIASES: NONE
COMPOSITION: WINDOWED-CALLED-HOST-TO-CALLING-HOST-

DATA-PACKET = [CALLED-HOST-TO-CALLING-
HOST-DATA-PACKET + PACKET-SEND-NUMBER
I HOST-RR I HOST-RNR I HOST-REJI +
PACKET-RECEIVE-NUMBER

NOTES: CALLED HOST PROTOCOL LAYER

DATAFLOW NAME: WINDOWED-CALLING-HOST-TO-CALLED-HOST-DATA-
PACKET

ALIASES: NONE
COMPOSITION: WINDOWED-CALLING-HOST-TO-CALLED-IIOST-DATA-

PACKET = [CALLING-HOST-TO-CALLED-HOST-DATA-
PACKET + PACKET-SEND-NUMBER I HOST-RR
HOST-RNR I HOST-REJ] + PACKET-RECEIVE-
NUMBER

NOTES: CALLING HOST PROTOCOL LAYER

199

FILE DEFINITIONS

FILE OR DATABASE NAME: CALLED-HOST-P(R)
ALIASES: NONE
COMPOSITION: CALLED-HOST-P(R) = ARRAY OF

[0 I 1 1 2 I 3 1 4 1 5 1 6 I 71
WITH 1 VALUE FOR EACH LOGICAL CHANNEL

ORGANIZATION: ARRAY
NOTES: CALLED HOST PROTOCOL LAYER

FILE OR DATABASE NAME: CALLED-HOST-P(S)
ALIASES: NONE
COMPOSITION: CALLED-HOST-P(S) = ARRAY OF

(0 I 1 2 1 3 I 4 1 5 I 6 I 71
WITH 1 VALUE FOR EACH LOGICAL CHANNEL

ORGANIZATION: ARRAY
NOTES: CALLED HOST PROTOCOL LAYER

FILE OR DATABASE NAME: CALLED-NODE-P(R)
ALIASES: NONE
COMPOSITION: CALLED-NODE-P(R) = ARRAY OF

[0 1 1 1 2 1 3 1 4 1 5 I 6 I 7]
WITH 1 VALUE FOR EACH LOGICAL CHANNEL

ORGANIZATION: ARRAY
NOTES: CALLED NODE PROTOCOL LAYER

FILE OR DATABASE NAME: CALLED-NODE-P(S)
ALIASES: NONE
COMPOSITION: CALLED-NODE-P(S) = ARRAY OF

[0 1 1 1 2 1 3 1 4 1 5 I 6 1 71
WITH 1 VALUE FOR EACH LOGICAL CHANNEL

ORGANIZATION: ARRAY
NOTES: CALLED NODE PROTOCOL LAYER

FILE OR DATABASE NAME: CALLING-HOST-P(R)
ALIASES: NONE
COMPOSITION: CALLING-HOST-P(R) = ARRAY OF

(0 1 1 1 2 I 3 1 4 1 5 I 6 1 71
WITH 1 VALUE FOR EACH LOGICAL CHANNEL

ORGANIZATION: ARRAY
NOTES: CALLING HOST PROTOCOL LAYER

200

FILE OR DATABASE NAME: CALLING-HOST-P(S)
ALIASES: NONE
COMPOSITION: CALLING-HOST-P(S) = ARRAY OF

[0 1 1 1 2 I 3 1 4 I 5 I 6 I 7]
WITH 1 VALUE FOR EACH LOGICAL CHANNEL

ORGANIZATION: ARRAY
NOTES: CALLING HOST PROTOCOL LAYER

FILE OR DATABASE NAME: CALLING-NODE-P(R)
ALIASES: NONE
COMPOSITION: CALLING-NODE-P(R) = ARRAY OF

[0 I 1 1 2 1 3 1 4 1 5 I 6 1 71
WITH 1 VALUE FOR EACH LOGICAL CHANNEL

ORGANIZATION: ARRAY
NOTES: CALLING NODE PROTOCOL LAYER

FILE OR DATABASE NAME: CALLING-NODE-P(S)
ALIASES: NONE
COMPOSITION: CALLING-NODE-P(S) = ARRAY OF

[0 1 1 1 2 1 3 I 4 1 5 I 6 I 71
WITH 1 VALUE FOR EACH LOGICAL CHANNEL

ORGANIZATION: ARRAY
NOTES: CALLING NODE PROTOCOL LAYER

201

PROCESS SPECIFICATIONS

PROCESS NAME: DIVIDE DATA INTO PACKETS
PROCESS NUMBER: 1.1
PROCESS DESCRIPTION:
For each 128 bytes

Make DATA-PACKET
If more bytes remain then use MORE-DATA-BIT
Else use LAST-PACKET-BIT

PROCESS NAME: PLACE CHANNNEL IN DATA TRANSFER STATE
PROCESS NUMBER: 1.2
PROCESS DESCRIPTION:
Execute NODE-CALL-SETUP-PACKET by making state transition

specified by the table below:

Present State Next State
Call-Cnc Clr-I Reset-I Restart-I

Rdy Error Error Error P-Restart
Dat-Tr
a) P-Reset Error P-Clr FC-Rdy P-Restart
b) FC-Rdy Error P-Clr P-Reset P-Restart
P-Clr P-Clr Rdy P-Clr P-Restart
P-Restart P-Restart P-Restart P-Restart Rdy
Call-Set FC-Rdy Rdy Error P-Restart

Present State Next State
Reset-C Restart-C Clr-C

Rdy Error Error Error
Dat-Tr
a) P-Reset FC-Rdy Error Error
b) FC-Rdy Error Error Error
P-Clr Error Error Rdy
P-Restart Error Rdy Error
Call-Set Error Error Error

Where
Call-Cnc = Call-Connected-Packet

Clr-I = Clear-Indication-Packet
Reset-I = Reset-Indication-Packet
Restart-I = Restart-Indication-Packet
Reset-C = Reset-Confirmation-Packet
Clr-C = Clear-Confirmation-Packet

202

Rdy = Ready State
Dat-Tr = Data Transfer State
P-Reset = Pending Reset State
FC-Rdy = Flow Control Ready State
P-CIr = Pending Clear State
P-Restart = Pending Restart State
Call-Set = Call Setup State

Case state of

Ready: If CALLING-HOST-TO-CALLED-HOST-DATA-PACKET
available then
Set up call by sending CALL-REQUEST-PACKET and
entering Call Setup State

Pending
Reset: If RESET-REQUEST-PACKET has not been sent or if

max-time-for-response has elapsed then
send RESET-REQUEST-PACKET and restart timer

Flow
Control
Ready: Queue CALLING-HOST-TO-CALLED-HOST-DATA-PACKET for

channel
Pending
Clear: If CLEAR-REQUEST-PACKET has not been sent or if

max-time-for-response has elapsed then
send CLEAR-REQUEST-PACKET and restart timer

Pending
Restart: If RESTART-REQUEST-PACKET has not been sent or if

max-time-for-response has elapsed then
send RESTART-REQUEST-PACKET and restart timer

Call
Setup: If max-time-for-response has elapsed then send

CALL-REQUEST-PACKET and restart timer

Error: Send RESTART-REQUEST-PACKET and enter Pending
Restart State

PROCESS NAME: WINDOW CALLING-HOST-TO-CALLED-HOST-
DATA-PACKET

PROCESS NUMBER: 1.3
PROCESS DESCRIPTION:
Case of CALLING-NODE-SUPERVISORY-PACKET

NODE-RR-PACKET: Calling Node State = Ready
P(R) = P(R) of NODE-RR-PACKET

NODE-RNR-PACKET: Calling Node State = Not Ready
P(R) = P(R) of NODE-RNR-PACKET

NODE-REJ-PACKET: Calling Node State = Ready
P(R) = P(R) of NODE-REJ-PACKET

While P(S)<P(R) then Send a CALLING-HOST-TO-CALLED-HOST-
DATA-PACKET from the queue and increment P(S) modulo 8

203

PROCESS NAME: SEND PACKET TO CALLING NODE
PROCESS NUMBER: 1.4
PROCESS DESCRIPTION:

Place Packet in Shared Memory Priority Queue for CALLING NODE
Priority 1: CALLING-HOST-INTERRUPT-CONFIRMATION-PACKET
Priority 2: HOST-CALL-SETUP-PACKET
Priority 3: WINDOWED-CALLING-HOST-TO-CALLED-HOST-DATA-

PACKET
(Priority 1 is highest)

PROCESS NAME: DETERMINE CALLING-NODE-TO-CALLING-
HOST-PACKET TYPE

PROCESS NUMBER: 1.5
PROCESS DESCRIPTION:
If Octet 3 = (00001011) or (00001111) or (00010011) or
(00010111) then CALLING-NODE-TO-CALLING-HOST-PACKET is a
NODE-CALL-SETUP-PACKET
Else if Octet 3 = (XXX00001) or (XXX00101) or (XXX01001) or
(00011011) or (00011111) then CALLING-NODE-TO-CALLING-HOST-
PACKET is a CALLING-NODE-SUPERVISORY-PACKET

Else if Octet 3 = (XXXXXXXO) then CALLING-NODE-TO-CALLING-
HOST-PACKET is a CALLED-HOST-TO-CALLING-HOST-DATA-PACKET
Else if Octet 3 = (00100011) then CALLING-NODE-TO-CALLING-
HOST-PACKET is a CATLED-HOST-TO-CALLING-HOST-NODE-
INTERRUPT-PACKET

PROCESS NAME: DETERMINE DATA PACKET CATEGORY AND
EXTRACT FLOW CONTROL

PROCESS NUMBER: 1.6
PROCESS DESCRIPTION:
P(R) = Bits 8,7,6 of Octet 3 of CALLED-HOST-TO-CALLING-HOST-
DATA-PACKET
P(S) = Bits 4,3,2 of Octet 3 of CALLED-HOST-TO-CALLING-HOST-
DATA-PACKET

If Bit 5 of Octet 3 of CALLED-HOST-TO-CALLING-HOST-DATA-
PACKET = 0 then CALLED-HOST-TO-CALLING-HOST-DATA-PACKET is
a CATEGORY-i-PACKET

Else CALLED-HOST-TO-CALLING-HOST-DATA-PACKET is a CATEGORY-

2-PACKET

PROCESS NAME: BUFFER PACKET SEQUENCE
PROCESS NUMBER: 1.7
PROCESS DESCRIPTION:
Extract CALLED-HOST-TO-CALLING-HOST Data Field and
append to end of Data Fields already buffered

204

PROCESS NAME: ASSEMBLE PACKET SEQUENCE
PROCESS NUMBER: 1.8
PROCESS DESCRIPTION:
When a CATEGORY-l-PACKET is received
Append Data Field to end of BUFFERED-SEQUENCE

PROCESS NAME: CONFIRM RECEIPT OF INTERRUPT PACKET
PROCESS NUMBER: 1.9
PROCESS DESCRIPTION:
Send HOST-INTERRUPT-CONFIRMATION-PACKET
Extract INTERRUPT-USER-DATA from CALLED-HOST-TO-CALLING-
HOST-NODE-INTERRUPT-PACKET which is contained in Octet 4

PROCESS NAME: SEND DATA TO CALLING HOST
PROCESS NUMBER: 1.10
PROCESS DESCRIPTION:
Place CALLED-HOST-TO-CALLING-HOST-INTERRUPT-DATA and
CALLED-HOST-TO-CALLING-HOST-COMPLETE-PACKET-SEQUENCE in
priority queue for transmission to CALLING HOST by
VIRTUAL TERMINAL PROTOCOL
Priority 1 (highest) INTERRUPT-DATA
Priority 2 COMPLETE-PACKET-SEQUENCE

PROCESS NAME: DETERMINE CALLING-HOST-PACKET TYPE
PROCESS NUMBER: 2.1.1
PROCESS DESCRIPTION:
Case Octet 3 of
(00001011): RECEIVED-CALL-REQUEST-PACKET
(XXXXXXX0): RECEIVED-WINDOWED-CALLING-HOST-TO-CALLED-HOST-

DATA-PACKET
(00100011): RECEIVED-CALLING-HOST-INTERRUPT-PACKET
(00010011): RECEIVED-CALLING-HOST-CLEAR-REQUEST
(00011011): RECEIVED-CALLING-HOST-RESET-REQUEST
(11111011): RECEIVED-CALLING-HOST-RESTART-REQUEST
(00010111) or
(00100111) or
(00011111) or
(11111111): CALLING-HOST-CONFIRMATION-PACKET
(XXX00001) or
(XXX00101) or
(XXX01001): CALLING-HOST-SUPERVISORY-PACKET

otherwise: INVALID-PACKET-TYPE

205

PROCESS NAME: NOTIFY CALLED NODE OF INCOMING CALL
PROCESS NUMBER: 2.1.2
PROCESS DESCRIPTION:
Set State of CALLING NODE to Call Setup State
Send CALL-REQUEST-PACKET as INCOMING-CALL-PACKET to
CALLED NODE

PROCESS NAME: UPDATE CALLING NODE WINDOWING VARIABLES
PROCESS NUMBER: 2.1.3
PROCESS DESCRIPTION:
P(R) = Bits 8,7,6 of Octet 3 of RECEIVED-WINDOWED-CALLING-

HOST-TO-CALLED-HOST-DATA-PACKET
P(S) = Bits 4,3,2 of Octet 3 of RECEIVED-WINDOWED-CALLING-

HOST-TO-CALLED-HOST-DATA-PACKET

PROCESS NAME: CONFIRM RECEIPT OF CALLING-HOST-
INTERRUPT

PROCESS NUMBER: 2.1.4
PROCESS DESCRIPTION:
Send CALLING-NODE-INTERRUPT-CONFIRMATION-PACKET to CALLING-
HOST upon receipt of a RECEIVED-CALLINC-HOST-INTERRUPT-
PACKET

PROCESS NAME: CONFIRM CALLING HOST CLEAR REQUEST
PROCESS NUMBER: 2.1.5
PROCESS DESCRIPTION:
Send any remaining CALLING-HOST-TO-CALLED-HOST-DATA-PACKETs
to CALLED-NODE

Clear virtual call and set CALLING NODE state to Ready State
Send CALLING-NODE-CLEAR-CONFIRMATION-PACKET to CALLING-HOST

PROCESS NAME: CONFIRM CALLING HOST RESET REQUEST
PROCESS NUMBER: 2.1.6
PROCESS DESCRIPTION:
Reset P(R) and P(S) to zero for the channel specified in the

RESET-REQUEST-PACKET
Set CALLING-NODE state to Flow Control Ready state
Send CALLING-NODE-RESET-CONFIRMATION-PACKET to CALLING-HOST

206

PROCESS NAME: CONFIRM CALLING HOST RESTART REQUEST
PROCESS NUMBER: 2.1.7

PROCESS DESCRIPTION:
Reset all P(S) and P(R) for the CALLING-NODE
Set the state of virtual circuits to Flow Control Ready
Set the state of virtual channels to Ready
Send CALLING-NODE-RESTART-CONFIRMATION-PACKET to CALLING-11OST

PROCESS NAME: SEND PACKET ONTO NETU7ORK
PROCESS NUMBER: 2.2
PROCESS DESCRIPTION:
Place PACKET in queue for transmission by the
Level 2 Protocol and the Routing Algorithm

PROCESS NAME: DETERMINE CALLED-NODE-PACKET TYPE
PROCESS NUMBER: 2.3.]
PROCESS DESCRIPTION:
Case Octet 3 of
(00100011): RECEIVED-CALLED-NODE-INTERRUPT-PACKET
(00001111): RECEIVED-CALL-ACCEPTED-PACKET
(XXXXXXX0): RECEIVED-CALLED-HOST-TO-CALLING-IOST-DATA-PACKET
otherwise: INVALID-PACKET TYPE

PROCESS NAME: INTERRUPT CALLING NODE TO CALLING HOST
DATA FLOW

PROCESS NUMBER: 2.3.2
PROCESS DESCRIPTION:
Transfer CALLED-HOST-INTERRUPT-DATA from RECEIVED-CALLED-
NODE-PACKET to CALLING-NODE-INTERRUPT-PACKET

PROCESS NAME: NOTIFY CALLING HOST OF CALL CONNECTION
PROCESS NUMBER: 2.3.3
PROCESS DESCRIPTION:
If in Call Setup state and CALL-ACCEPTED-PACKET received
from CALLED NODE then send CALL-CONNECTED-PACKET to CALLING
NODE
If not in Call Setup state and CALL-ACCEPTED-PACKET received

then discard packet
If in Call Setup state and no CALL-ACCEPTED-PACKET is
received prior to expiration of max-time-for-call-setup-
timer then send CALLING-NODE-CLEAR-INDICATION-PACKET to

CALLING HOST

207

PROCESS NAME: WINDOW CALLED-I]OST-TO-CALLING-IIOST-
DATA-PACKETS

PROCESS NUMBER: 2.3.4
PROCESS DESCRIPTION:
Case CALLING-HOST-SUPERVISORY-PACKET of

HOST-RR: Set CALLING NODE state to Ready
HOST-RNR: Set CALLING NODE state to Not Ready
HOST-REJ: Set CALLING NODE state to Ready

Set P(R) = Bits 8,7,6 of Octet 3 of CALLING-HOST-SUPERVISORY-
PACKET

While there are RECEIVED-CALLED-HOST-TO-CALLING-HOST-DATA-
PACKETs available for transmission to the CALLING HOST
and while P(S)<P(R) send CALLING-NODE-WINDOWED-CALLED-HOST-
TO-CALLING-HOST-DATA-PACKETs to CALLING HOST

If no DATA-PACKETS available for transmission for max-time-
between-updates then send CALLING-NODE-SUPERVISORY-PACKET
to CALLING HOST

PROCESS NAME: SEND PACKET TO CALLING HOST
PROCESS NUMBER: 2.4
PROCESS DESCRIPTION:
Place Packet in Shared Memory Priority Queue for CALLING-I1OST

Priority 1: RESTART-INDICATION-PACKET
Priority 2: CALLED-HOST-TO-CALLING-HOST-NODF-INTERRUPT-

PACKET
Priority 3: CALLING-NODE-CONFIRMATION-PACKETS
Priority 4: CALLED-HOST-TO-CALLING-IIOST-DATA-PACKETS
Priority 5: CALLING-NODE-SUPERVISORY-PACKETS

(Priority 1 is the highest)

PROCESS NAME: RECOVER FROM PROCEDURE ERROR
PROCESS NUMBER: 2.5
PROCESS DESCRIPTION:
Upon detection of a LOCAL-PROCEDURE-ERROR send an
ERROR-RECOVERY-PACKET to the CALLING HOST

208

PROCESS NAME: DETERMINE CALLED-HOST-PACKET TYPE
PROCESS NUMBER: 4.1.]
PROCESS DESCRIPTION:

Case Octet 3 of
(00001111): RECEIVED-CALL-ACCEPTED-PACKET
(XXXXXXX0): RECEIVED-WINDOWED-CALLED-HOST-TO-CALLING-HOST-

DATA-PACKET
(00100011): RECEIVED-CALLED-HOST-INTERRUPT-PACKET
(00010011) : RECEIVED-CALLED-HOST-CLEAR-REQUEST
(00011011) : RECEIVED-CALLED-HOST-RESET-REQUEST
(11111011): RECEIVED-CALLED-HOST-RESTART-REQUEST
(00010111) or
(00100111) or
(00011111) or
(11111111): CALLED-HOST-CONFIRMATION-PACKET
(XXX00001) or
(XXX00101) or
(XXX01001): CALLED-HOST-SUPERVISORY-PACKET
otherwise: INVALID-PACKET-TYPE

PROCESS NAME: RELAY CALL ACCEPTANCE TO CALLING NODE
PROCESS NUMBER: 4.1.2
PROCESS DESCRIPTION:
Set state of CALLED NODE to Flow Control Ready state
Send RELAYED-CALL-ACCEPTANCE-PACKET to CALLING NODE

PROCESS NAME: UPDATE CALLED NODE WINDOWING VARIABLES
PROCESS NUMBER: 4.1.3
PROCESS DESCRIPTION:
P(R) = Bits 8,7,6 of Octet 3 of RECEIVED-WINDOWED-CALLED-

HOST-TO-CALLING-HOST-DATA-PACKET
P(S) = Bits 4,3,2 of Octet 3 of RECEIVED-WINDOWED-CALLED-

HOST-TO-CALLING-HOST-DATA-PACKET

PROCESS NAME: CONFIRM RECEIPT OF CALLED-HOST-
INTERRUPT

PROCESS NUMBER: 4.1.4
PROCESS DESCRIPTION:
Send CALLED-NODE-INTERRUPT-CONFIRMATION-PACKET to CALLED-
HOST upon receipt of a RECEIVED-CALLED-HOST-INTERRUPT-
PACKET

209

PROCESS NAME: CONFIRM CALLED HOST CLEAR REQUEST
PROCESS NUMBER: 4.1.5
PROCESS DESCRIPTION:

Send any remaining CALLED-HOST-TO-CALLING-HOST-DATA-PACKETs
to CALLING NODE

Clear virtual call and set CALLED NODE state to Ready state
Send CALLED-NODE-CLEAR-CONFIRMATION-PACKET to CALLING-HOST

PROCESS NAME: CONFIRM CALLING HOST RESET REQUEST
PROCESS NUMBER: 4.1.6
PROCESS DESCRIPTION:
Reset P(R) and P(S) for the CALLED NODE
Set CALLED NODE state to Flow Control Ready state
Send CALLED-NODE-RESET-CONFIRMATION-PACKET to CALLED HOST

PROCESS NAME: CONFIRM CALLED HOST RESTART REQUEST
PROCESS NUMBER: 4.1.7
PROCESS DESCRIPTION:
Reset all P(R) and P(S) for the CALLED NODE
Set the state of the virtual circuits to Flow Control Ready
Set the state of the virtual channels to Ready
Send CALLED-NODE-RESTART-CONFIRMATION-PACKET to CALLED HOST

PROCESS NAME: SEND PACKET ONTO NETWORK
PROCESS NUMBER: 4.2
PROCESS DESCRIPTION: SEE PROCESS 2.2

PROCESS NAME: DETERMINE CALLING NODE PACKET TYPE
PROCESS NUMBER: 4.3.1
PROCESS DESCRIPTION:
Case Octet 3 of
(00100011): RECEIVED-CALLING-NODE-INTERRUPT-PACKET
(00001011): RECEIVED-INCOMING-CALL-PACKET
(XXXXXXXO): RECEIVED-CALLING-HCST-TO-CALLED-HOST-DATA-PACKET
otherwise: INVALID-PACKET TYPE

PROCESS NAME: INTERRUPT CALLED NODE TO CALLED HOST
DATA FLOW

PROCESS NUMBER: 4.3.2
PROCESS DESCRIPTION:
Transfer CALLING-HOST-INTERRUPT-DATA from RECEIVED-CALLING-
NODE-INTERRUPT-PACKET to CALLED-NODE-INTERRUPT-PACKET

210

PROCESS NAME: NOTIFY CALLED HOST OF INCOMING CALL
PROCESS NUMBER: 4.3.3

PROCESS DESCRIPTION:
If in Ready state then relay RECEIVED-INCOMING-CALL-PACKET
to CALLING HOST and set CALLED NODE state to Call Setup
state

Else discard packet

PROCESS NAME: WINDOW CALLING-HOST-TO-CALLED-HOST-
DATA-PACKETS

PROCESS NUMBER: 4.3.4
PROCESS DESCRIPTION:
Case CALLED-HOST-SUPERVISORY-PACKET of

HOST-RR,HOST-REJ: Set CALLED NODE state to Ready
HOST-RNR: Set CALLED NODE state to Not Ready

Set P(R) = Bits 8,7,6 of Octet 3 of CALLED-HOST-SUPERVISORY-
PACKET

While there are RECEIVED-CALLING-HOST-TO-CALLED-HOST-DATA-
PACKETS available for transmission to the CALLED HOST and

while P(S) < P(R) send CALLED-NODE-WINDOWED-CALLING-HOST-
TO-CALLED-HOST-DATA-PACKETs to CALLED HOST

If no DATA-PACKETS available for transmission for max-time-
between-updates then send CALLED-NODE-SUPERVISORY-PACKET
to CALLED HOST

PROCESS NAME: SEND PACKET TO CALLED HOST
PROCESS NUMBER: 4.4
PROCESS DESCRIPTION:
Place Packet in Shared Memory Priority Queue for CALLED-HOST

Priority 1: RESTART-INDICATION-PACKET
Priority 2: CALLING-HOST-TO-CALLED-HOST-NODE-INTERRUPT-

PACKET
Priority 3: CALLED-NODE-CONFIRMATION-PACKETS
Priority 4: CALLING-HOST-TO-CALLED-IHOST-DATA-PACKETS
Priority 5: CALLED-NODE-SUPERVISORY-PACKETS

(Priority 1 is the highest)

PROCESS NAME: RECOVER FROM PROCEDURE ERROR
PROCESS NUMBER: 4.5
PROCESS DESCRIPTION:
Upon detection of a PROCEDURE-ERROR send an
ERROR-RECOVERY-PACKET to the CALLED-HOST

211

PROCESS NAME: DIVIDE DATA INTO PACKETS
PROCESS NUMBER: 5.1
PROCESS DESCRIPTION: SEE PROCESS 1.1

PROCESS NAME: KEEP CHANNEL IN DATA TRANSFER STATE
PROCESS NUMBER: 5.2
PROCESS DESCRIPTION:
Execute NODE-CALL-MAINTENANCE-PACKET by making the state

transition specified by the table below:

Present State Next State
Inc-Call Clr-I Reset-I Restart-I

Rdy FC-Rdy Error Error P-Restart
Dat-Tr
a)P-Reset P-Reset P-Clr FC-Rdy P-Restart
b)FC-Rdy FC-Rdy P-Clr P-Reset P-Restart
P-Clr P-Clr Rdy P-Clr P-Restart
P-Restart P-Restart P-Restart P-Restart Rdy

Present State Next State
Reset-C Restart-C Clr-C

Rdy Error Error Error
Dat-Tr
a)P-Reset FC-Rdy Error Error
b)FC-Rdy Error Error Error
P-Clr Error Error Rdy
P-Restart Error Rdy Error

Where
Inc-Call = Incoming-Call-Packet
Clr-I = Clear-Indication-Packet
Reset-I = Reset-Indication-Packet
Restart-I = Restart-Indication-Packet
Reset-C = Reset-Confirmation-Packet
Clr-C = Clear-Confirmation-Packet
Rdy = Ready State
Dat-Tr = Data Transfer State
P-Reset = Pending Reset State
FC-Rdy = Flow Control Ready State
P-Clr = Pending Clear State
P-Restart = Pending Restart State

212

Case state of

Ready: If INCOMING-CALL-PACKET received from CALLED
NODE then send CALL-ACCEPTED-PACKET back to
CALLED NODE

Pending
Reset: If RESET-REQUEST-PACKET has not been sent or if

max-time-for-response has elapsed then
send RESET-REQUEST-PACKET and restart timer

Flow
Control
Ready: Queue CALLED-HOST-TO-CALLING-HOST-DATA-PACKET for

channel
Pending
Clear: If CLEAR-REQUEST-PACKET has not been sent or if

max-time-for-response has elapsed then
send CLEAR-REQUEST-PACKET and restart timer

Pending
Restart: If RESTART-REQUEST-PACKET has not been sent or if

max-time-for-response has elapsed then
send RESTART-REQUEST-PACKET and restart timer

Error: Send RESTART-REQUEST-PACKET and enter Pending
Restart State

PROCESS NAME: WINDOW CALLED-HOST-TO-CALLING-HIOST-
DATA-PACKET

PROCESS NUMBER: 5.3
PROCESS DESCRIPTION:
Case of CALLED-NODF-SUPERVISORY-PACKET

NODE-RR-PACKET: Called Node State = Ready
P(R) = P(R) of NODE-RR-PACKET

NODE-RNR-PACKET: Called Node State = Not Ready
P(R) = P(R) of NODE-RNR-PACKET

NODE-REJ-PACKET: Called Node State = Ready
P(R) = P(R) of NODE--REJ-PACKET

While P(S)<P(R) then Send a CALLED-HOST-TO-CALLING-HOST-
DATA-PACKET from the queue and increment P(S) modulo 8

PROCESS NAME: SEND PACKET TO CALLED NODE
PROCESS NUMBER: 5.4
PROCESS DESCRIPTION:
Place Packet in Shared Memory Priority Queue for CALLED NODE

Priority 1: CALLED-HOST-INTERRUPT-CONFIRMATION-PACKET
Priority 2: HOST-CALL-MAINTENANCE-PACKET
Priority 3: WINDOWED-CALLED-HOST-TO-CALING-HOST-DATA-

PACKET
(Priority 1 is highest)

213

PROCESS NAME: DETERMINE CALLED-NODE-TO-CALLED-HOST

PACKET TYPE
PROCESS NUMBER: 5.5
PROCESS DESCRIPTION:
If Octet 3 = (00001011) or (00010011) or (00010111)
or (00011011) or (00011111) or (11111011) or (11111111)
then CALLED-NODE-TO-CALLED-HOST-PACKET is a
NODE-CALL-MAINTENANCE-PACKET
Else if Octet 3 = (XXX00001) or (XXX00101) or (XXX01001) or
then CALLED-NODE-TO-CALLED-HOST-PACKET is a
CALLED-NODE-SUPERVISORY-PACKET

Else if Octet 3 = (XXXXXXXO) then CALLED-NODE-TO-CALLED-
HOST-PACKET is a CALLING-HOST-TO-CALLED-HOST-DATA-PACKET

Else if Octet 3 = (00100011) then CALLED-NODE-TO-CALLED-
HOST-PACKET is a CALLING-HOST-TO-CALLED-HOST-NODE-
INTERRUPT-PACKET

PROCESS NAME: DETERMINE DATA PACKET CATEGORY AND
EXTRACT FLOW CONTROL

PROCESS NUMBER: 5.6
PROCESS DEFINITION:
P(R) = Bits 8,7,6 of Octet 3 of CALLING-HOST-TO-CALLED-HOST-
DATA-PACKET
P(S) = Bits 4,3,2 of Octet 3 of CALLING-HOST-TO-CALLED-HOST-
DATA-PACKET

If Bit 5 of Octet 3 of CALLING-HOST-TO-CALLED-HOST-DATA-
PACKET = 0 then CALLING-HOST-TO-CALLED-HOST-DATA-PACKET is
a CATEGORY-i-PACKET
Else CALLING-HOST-TO-CALLED-HOST-DATA-PACKET is a CATEGORY-
2-PACKET

PROCESS NAME: BUFFER PACKET SEQUENCE
PROCESS NUMBER: 5.7
PROCESS DESCRIPTION:
Extract CALLING-HOST-TO-CALLED-HOST Data Field and
append to end of Data Fields already buffered

PROCESS NAME: ASSEMBLE PACKET SEQUENCE
PROCESS NUMBER: 5.8
PROCESS DESCRIPTION: SEE PROCESS 1.8

214

PROCESS NAME: CONFIRM RECEIPT OF INTERRUPT PACKET
PROCESS NUMBER: 5.9
PROCESS DESCRIPTION:
Send HOST-INTERRUPT-CONFIRMATION-PACKET
Extract INTERRUPT-USER-DATA from CALLING-HOST-TO-CALLED-
HOST-NODE-INTERRUPT-PACKET which is contained in Octet 4

PROCESS NAME: SEND DATA TO CALLED HOST
PROCESS NUMBER: 5.10
PROCESS DESCRIPTION:
Place CALLING-HOST-TO-CALLED-HOST-INTERRUPT-DATA and
CALLING-HOST-TO-CALLED-HOST-COMPLETE-PACKET-SEQUENCE in
priority queue for transmission to CALLED HOST by
VIRTUAL TERMINAL PROTOCOL
Priority 1 (highest) INTERRUPT-DATA
Priority 2 COMPLETE-PACKET-SEQUENCE

215

DATA DICTIONARY

FOR NETWORK PROTOCOL

DATA ELEMENT NAME: IN-TRANSIT-PACKET

ALIASES: NONE
VALUES AND MEANINGS: ANY LEVEL 3 PACKET THAT HAS BEEN

DETERMINED TO NOT BE AT ITS DESTINATION
NODE

NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: SOURCE-NODE-LEVEL,-3-PACKET

ALIASES: NONE
VALUES AND MEANINGS: ANY LEVEL 3 PACKET THAT HAS BEEN

PASSED FROM THE SOURCE HOST TO THE
NODE SERVING THAT HOST AS AN ENTRY
POINT TO THE NETWORK

NOTES: CONTEXT LAYER

DATA ELEMENT NAME: TRANSMITTED-PACKET
ALIASES: NONE
VALUES AND MEANINGS: ANY LEVEL 3 PACKET THAT HAS BEEN

TRANSMITTED FROM ONE NODE TO ANOTHER
NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: TRANSMITTED-SOURCE-NODE-LEVEL-3-PACKET
ALIASES: TRANSMITTED-SOURCE-NODE-PACKET
VALUES AND MEANINGS: ANY LEVEL 3 PACKET THAT HAS BEEN

TRANSMITTED ACROSS THE NETWORK TO THE
NODE THAT SERVES AS THE ENTRY POINT
FOR THE HOST THAT IS THE PACKET'S
DESTINATION

NOTES: CONTEXT LAYER

DATA ELEMENT NAME: TRANSMITTED-SOURCE-NODE-PACKET
ALIASES: TRANSMITTED-SOURCE-NODE-LEVEL-3-PACKET
VALUES AND MEANINGS: SEE ALIAS
NOTES: SEE ALIAS

216

FILE DEFINITIONS

FILE OR DATABASE NAME: ROUTING-LOOKUP-TABLE
ALIASES: NONE
COMPOSITION: ROUTING-LOOKUP-TABLE =

{DESTINATION-NODE + NEXT-CLOSER-NODE}
ORGANIZATION: ARRAY

EACH NODE MUST HAVE ITS OWN LOOKUP
TABLE STORED IN IT

NOTES: OVERVIEW LAYER

217

PROCESS SPECIFICATIONS

PROCESS NAME: DETERMINE THE NEXT CLOSER NODE
PROCESS NUMBER: 1
PROCESS DESCRIPTION:
Access the ROUTING-LOOKUP-TABLE using the LEVEL-3-PACKET's
DEST-HOST field to find the NEXT-CLOSER-NODE

If the NEXT-CLOSER-NODE is the PRESENT-NODE then pass the
LEVEL-3-PACKET to the LEVEL-3-NODE-PROTOCOL

Else output the LEVEL-3-PACKET as an IN-TRANSIT-PACKET with
the NEXT-CLOSER-NODE as the NEXT-PACKEP-DESTINATION

PROCESS NAME: TRANSMIT PACKET TO ROUTED NODE
PROCESS NUMBER: 2
PROCESS DESCRIPTION:
Use the X.25 Level 2 Protocol to transmit the IN-TRANSIT-
PACKET to the NEXT-PACKET-DESTINATION as a TRANSMITTED-
PACKET

I 21

DATA DICTIONARY

FOR X.25 LEVEL 2 PROTOCOL

DATA ELEMENT NAME: ABORTED-PACKET
ALIASES: NONE
VALUES AND MEANINGS: ANY PACKET CONTAINING A SEQUENCE OF

SEVEN CONSECUTIVF 1'S
NOTES: EXTRACT VALID PACKET LAYER

DATA ELEMENT NAME: ADDRESS-FIELD
ALIASES: NONE
VALUES AND MEANINGS: 8 BIT FIELD

(10000000) = PRIMARY TO SECONDARY
COMMAND OR SECONDARY TO
PRIMARY RESPONSE

(11000000) = PRIMARY TO SECONDARY
RESPONSE OR SECONDARY TO
PRIMARY COMMAND

NOTES: HDLC PRIMARY,SECONDARY PROTOCOL LAYERS

DATA ELEMENT NAME: BUSY-INDICATION
ALIASES: NONE
VALUES AND MEANINGS: TWO-BIT CODE WITH VALUE = 10

INDICATES THAT THE SECONDARY NODE IS
NOT READY TO RECEIVE LEVEL-2-PACKETS

NOTES: EXECUTE S-FRAME RESPONSE LAYER,
WINDOW PRIMARY INFORMATION BLOCKS LAYER

DATA ELEMENT NAME: BUSY-N(R)
ALIASES: N(R)
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE S-FRAME-RESPONSE LAYER,

WINDOW PRIMARY INFORMATION BLOCKS LAYER

DATA ELEMENT NAME: BUSY-PRIMARY-N(R)
ALIASES: PRIMARY-N(R)
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE S-FRAME COMMAND LAYER,

WINDOW SECONDARY INFORMATION BLOCKS

219

DATA ELEMENT NAME: CMDR(FRMR)-RESPONSE
ALIASES: NONE
COMPOSITION: CMDR(FRMR)-RESPONSE = 1100 + FINAL-BIT

+ 001

NOTES: HDLC PRIMARY, SECONDARY NODE PROTOCOL
LAYERS

DATAFLOW NAME: COMMAND-MODIFIER-BITS
ALIASES: NONE
COMPOSITION: COMMAND-MODIFIER-BITS = [DISC-COMMAND

I TRANSMITTED-SABM-COMMAND]
NOTES: EXECUTE U-FRAME COMMAND LAYER

DATAFLOW NAME: CONTROL-FIELD
ALIASES: NONE
COMPOSITION: CONTROL-FIELD = [I-FRAME-CONTROL-FIELD

I S-FRAME-CONTROL-FIELD I U-FRAME-
CONTROL-FIELD]

NOTES: HDLC PRIMARY, SECONDARY NODE PROTOCOL
LAYERS

DATA ELEMENT NAME: DISC-COMMAND
ALIASES: NONE
VALUES AND MEANINGS: BITS 1,2,7 = 1

BITS 3,4,6,8 = 0
COMMANDS THE SECONDARY NODE TO
ENTER THE DISCONNECTED STATE

NOTES: EXECUTE U-FRAME COMMAND LAYER

DATA ELEMENT NAME: DISC-UA-RESPONSE
ALIASES: NONE
VALUES AND MEANINGS: DISCONNECT ACKNOWLEDGEMENT RESPONSE

BITS 1,2,6,7 = 1
BITS 3,4,8 = 0
ACKNOWLEDGES TO THE PRIMARY NODE THAT
THE SECONDARY NODE IS NM7 IN THE

DISCONNECTED STATE

NOTES: EXECUTE U-FRAME COMMAND LAYER,
WINDOW SECONDARY INFORMATION BLOCKS
LAYER

220

DATA ELEMENT NAME: DM-RESPONSE
ALIASES: NONE

VALUES AND MEANINGS: BITS 1-4 = 1
BITS 6,7,8 = 0
INDICATES THAT THE SECONDARY NODE IS
IN THE DISCONNECTED MODE AND CANNOT
RECEIVE LEVEL-2-PACKETS EXCEPT FOR A
SABM-COMMAND

NOTES: EXECUTE U--FRAME RESPONSE, COMMAND LAYER
AND WINDOW SECONDARY INFORMATION
BLOCKS LAYER

DATA ELEMENT NAME: FCS-BLOCK
ALIASES: NONE
VALUES AND MEANINGS: FIELD CHECK SEQUENCE BLOCK

A SIXTEEN BIT SEQUENCE GENERATED AT
THE TRANSMITTING NODE THAT IS THE
REMAINDER AFTER DIVISION OF THE LEVEL-
2-PACKET BY THE CRC POLYNOMIAL

NOTES: EXTRACT VALID PACKET LAYER

DATA ELEMENT NAME: FCS-ERROR-PACKET
ALIASES: NONE
VALUES AND MEANINGS: A VALID-LENGTH-PACKET WHOSE FCS-BLOCK

DOES NOT MATCH THE LOCALLY-GENERATED-
CRC-POLYNOMIAL

NOTES. EXTRACT VALID PACKET LAYER

DATA ELEMENT NAME: FINAL-BIT
ALIASES: I-FRAME-FINAL-BIT, S-FRAME-FINAL-BIT,

U-FRAME-FINAL-BIT
VALUES AND MEANINGS: BIT 5 OF THE SECONDARY-FRAME-CONTROL-

FIELD
0 = NOT A RESPONSE TO A PRIMARY NODE

POLL
1 = THE RESPONSE TO THE PRIMARY NODE

POLL
NOTES: HDLC PRIMARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: I-FRAME-FINAL-BIT
ALIASES: FINAL-BIT
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE SECONDARY I-FRAME PACKET LAYER

221

DATAFLOW NAME: I-FRAME-PACKET-SEQUENCE-INFO
ALIASES: SECONDARY-I-FRAME-PACKET-SEQUENCE-INFO,

PRIMARY-I-FRAME-PACKET-SEQUENCI.- INFO
COMPOSITION: I-FRAME-PACKET-SEQUENCE-INFO = N(R) +

N (S)
NOTES: HDLC PRIMARY, SECONDARY NODE PROTOCOL

LAYERS

DATA ELEMENT NAME: I-FRAME-POLL-BIT
ALIASES: POLL-BIT
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE PRIMARY I-FRAME PACKET LAYER,

WINDOW SECONDARY INFORMATION BLOCKS
LAYER

DATA ELEMENT NAME: INVALID-LENGTH-PACKET
ALIASES: INVALID-LENGTH-PRIMARY-PACKET,

INVALID-LENGTH-SECONDARY-PACKET
VALUES AND MEANINGS: ANY UNSTUFFED-PACKET THAT IS LESS THAN

32 BITS LONG
NOTES: EXTRACT VALID PACKET LAYER

DATA ELEMENT NAME: INVALID-LENGTH-PRIMARY-PACKET
ALIASES: INVALID-LENGTH-PACKET
VALUES AND MEANINGS: SEE ALIAS
NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: INVALID-LENGTH-SECONDARY-PACKET
ALIASES: INVALID-LENGTH-PACKET
VALUES AND lEANINGS: SEE ALIAS
NOTES: HDLC PRIMARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: INVALID-SECONDARY-N(R)-I-FRAMe
ALIASES: NONE
VALUES AND MEANINGS: ANY SECONDARY-TO-PRIMARY-I-FRAME WITH

AN N(R) THAT IS NOT IN THE WINDOW OF
THE PRIMARY NODE

NOTES: HDLC PRIMARY NODE PROTOCOL LAYER

222

DATA ELEMENT NAME: INVALID-PRIMARY-PACKET-TYPE
ALIASES: NONE

VALUES AND MEANINGS: ANY PRIMARY-LEVEL-2-PACKET THAT
PASSES THE INITIAL VALIDATION IN THE
EXTRACT VALID PACKET PROCESS BUT
CANNOT BE RECOGNIZED AS ANY OF THE
LEGAL PRIMARY PACKET TYPES

NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: INVALID-SECONDARY-PACKET-TYPE
ALIASES: NONE
VALUES AND MEANINGS: ANY SECONDARY-LEVEL-2-PACKET THAT

PASSES THE INITIAL VALIDATION IN THE
EXTRACT VALID PACKET PROCESS BUT
CANNOT BE RECOGNIZED AS ANY OF THE
LEGAL SECONDARY PACKET TYPES

NOTES: HDLC PRIMARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: LEVEL-2-PACKET
ALIASES: NONE
VALUES AND MEANINGS: THE CONTENTS BETWEEN TWO SYN CHARACTERS

EXCLUDING THE ABORTED PACKETS

NOTES: EXTRACT VALID PACKET LAYER

DATA ELEMENT NAME: LINK-STATUS
ALIASES: NONE
VALUES AND MEANINGS: INDICATES THE CURRENT STATE OF THE

LINK BETWEEN THE PRIMARY AND SECONDARY
NODES
THE STATE OF THE LINK MAY BE EITHER
DISCONNECTED, READY, OR PENDING-SETUP

NOTES: EXECUTE U-FRAME RESPONSE LAYER,
WINDOW PRIMARY INFORMATION BLOCKS LAYER

DATA ELEMENT NAME: LOCALLY-GENERATED-CRC-REMAINDER
ALIASES: NONE
VALUES AND MEANINGS: A SIXTEEN BIT SEQUENCE THAT IS THE

REMAINDER AFTER DIVISION OF THE VALID-
LENGTH-PACKET BY THE CRC POLYNOMIAL

NOTES: EXTRACT VALID PACKET LAYER

223

DATA ELEMENT NAME: N(R)
ALIASES: READY-N(R) , BUSY-N(R), REJECT-N(R)
VALUES AND MEANINGS: RECEIVE SEQUENCE NUMBER

BITS 6,7,8 OF THE SECONDARY-I-FRAME-
CONTROL-FIELD
INDICATES THE NEXT PACKET THAT THE
SECONDARY NODE EXPECTS TO RECEIVE FROM
THE PRIMARY NODE

NOTES: HDLC PRIMARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: N(S)
ALIASES: NONE
VALUES AND MEANINGS: SEND SEQUENCE NUMBER

BITS 2,3,4 OF THE I-FRAME-CONTROL-FIELD
NOTES: FDLC PRIMARY AND SECONDARY NODES

PROTOCOL LAYERS

DATA ELEMENT NAME: OUT-OF-SEQUENCE-PRIMARY-I-FRAME
ALIASES: OUT-OF-SEQUENCE-PRIMARY-I-FRAME-PACKET
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE PRIMARY I-FRAME PACKET

DATA ELEMENT NAME: OUT-OF-SEQUENCE-PRIMARY-I-FRAME-PACKET
ALIASES: NONE
VALUES AND MEANINGS: ANY PRIMARY-TO-SECONDARY-I-FRAME WITH

AN N(R) THAT IS NOT IN THE WINDOW OF
THE SECONDARY NODE

NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: POLL-BIT
ALIASES: I-FRAME-POLL-BIT, S-FRAME-POLL-BIT,

U-FRAME-POLL-BIT
VALUES AND MEANINGS: BIT 5 OF THE PRIMARY-FRAME-CONTROL-

FIELD
IF THIS BIT IS A 1 THEN THE PRIMARY
NODE IS REQUESTING A STATUS UPDATE
FROM THE SECONDARY NODE ON THE VALUF
OF THE WINDOWING VARIABLES AND THE
STATE OF THE SECONDARY NODE

NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

:24

DATA ELEMENT NAME: PRIMARY-BUSY-INDICATION
ALIASES: NONE
VALUES AND MEANINGS: TWO-BIT CODE WITH VALUE = 10

INDICATES THAT THE PRIMARY NODE IS
NOT READY TO RECEIVE LEVEL-2-PACKETS

NOTES: EXECUTE S-FRAME COMMAND LAYER,
WINDOW SECONDARY INFORMATION BLOCKS LAYER

DATA ELEMENT NAME: PRIMARY-BUSY-N(R)

ALIASES: BUSY-PRI MARY -N (R)
VALUES AND MEANINGS: SEE ALIAS
NOTES: WINDOW SECONDARY INFORMATION BLOCKS

LAYER
DATAFLOW NAME: PRIMARY-I-FRAME-CONTROL-FIELD
ALIASES: NONE
COMPOSITION: PRIMARY-I-FRAME-CONTROL-FIELD = 0 +

N(S) + I-FRAME-POLL-BIT + N(R)
NOTES: EXECUTE PRIMARY I-FRAME PACKET LAYER

DATAFLOW NAME: PRIMARY-I-FRAME-PACKET
ALIASES: PRIMARY-TO-SECONDARY-I-FRAME-PACKET
COMPOSITION: SEE ALIAS
NOTES: EXECUTE PRIMARY I-FRAME PACKET

DATA ELEMENT NAME: PRIMARY-I-FRAME-N(R)
ALIASES: PRIMARY-I-FRAME-PACKET-SEQUENCE-INFO
VALUES AND MEANINGS: AN INTEGER BETWEEN 0 AND 7 INDICATING

THE NEXT PACKET SEQUENCE NUMBER THAT
THE PRIMARY NODE IS EXPECTING TO
RECEIVE

NOTES: EXECUTE PRIMARY I-FRAME PACKET LAYER,
WINDOW SECONDARY INFORMATION BLOCKS
LAYER

DATA ELEMENT NAME: PRIMARY-I-FRAME-PACKET-SEQUENCE-INFO

ALIASES: PRIMARY-I-FRAME-N(R)
VALUES AND MEANINGS: SEE ALIAS
NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

DATAFLOW NAME: PRIMARY-INCOMING-BIT-STREAM
ALIASES: NONE

COMPOSITION: PRIMARY-INCOMING-BIT-STREAM =
{{SYN} + TRANSMITTED-SECONDARY-LEVEL-2-
PACKETI

NOTES: OVERVIEW LAYER

225

{ l

DATAFLOW NAME: PRIMARY-LEVEL-2-PACKET
ALIASES: NONE
COMPOSITION: PRIMARY-LEVEL-2-PACKET = ADDRESS-FIELD

+ CONTROL-FIELD + (INFO-FIELD)
NOTES: IDLC PRIMARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: PRIMARY-LEVEL-3-PACKET
ALIASES: PRIMARY-NODE- LEVEL-3-PACKET
VALUES AND MEANINGS: SEE ALIAS
NOTES: WINDOW PRIMARY INFORMATION BLOCKS

LAYER

DATA ELEMENT N4AME: PRIMARY-NODE-LEVEL-3-PACKET
ALIASES: PRIMARY-LEVEL-3-PACKET
VALUES AND MEANINGS- ANY LEVEL 3 PACKET AT A NODE THAT HAS

BEEN DESIGNATED AS A PRIMARY NODE
NOTES: OVERVIEW LAYER

DATAFLOW NAME: PRIMARY-NODE-STATUS
ALIASES: NONE
COMPOSITION: PRIMARY-NODE-STATUS = [READY-

INDICATION + READY-N(R) BUSY-
INDICATION + BUSY-N(R) REJECTION-
EXCEPTION-CONDITION + REJECT-N(R)]
+ S-FRAME-POLL-BIT

NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: PRIMARY-N(R)
ALIASES: READY-PRIMARY-N(R), BUSY-PRIMARY-N(R),

REJECT-PRIMARY-N (R)
VALUES AND MEANINGS: RECEIVE SEQUENCE NUMBER

BITS 6,7,P OF THE PRIMARY-I-FRAME-
CONTROL-FI ELD
INDICATES THE NEXT PACKET THAT THE
PRIMARY NODE EXPECTS TO RECEIVE FROM
THE SECONDARY NODE

NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

DATAFLOW NAMF: PRIMARY-OUTGOING-BIT-STPEAM
ALIASES: NONE
COMPOSITION: PRIMARY-OUTGOING-BIT-STREAM

{{SYN} + TRANSMITTED-SECONDAPY-
LEVEL-2-PACKETI

NOTES: OVERVIEW LAYER

226

DATA ELEMENT NAME: PRIMARY-READY-INDICATION
ALIASES: NONE
VALUES AND MEANINGS: TWO BIT CODE WITH VALUE = 00

INDICATES '.HAT THE PRIMARY NODE IS
READY TO RECEIVE LEVEL-2-PACKETS

NOTES: EXECUTE S-FRAME COMMAND LAYER,

WINDOW SECONDARY INFORMATION BLOCKS

ALI ASES : R EADY-PR IMARY-N (R)

VALUES AND MEANINGS: SEE ALIAS
NOTES: WINDOW SECONDARY INFORMATION BLOCKS

LAYER

DATA ELEMENT NAME: PRIMARY-REJECT-N(R)

ALIASES: PRIMARY-N(R)
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE S-FRAME COMMAND LAYER,

WINDOW SECONDARY INFORMATION BLOCKS LAYER

DATA ELEMENT NAME: PRIMARY-REJECTION-CONDITION
ALIASES: NONE
VALUES AND MEANINGS: TWO-BIT CODE WITH VALUE 01 THAT

INDICATES THAT THE SECONDARY-V(S) IS TO
BE RESET TO THE N(R) IN THE REJ-
COMMAND AND ALL PACKETS SUBSEQUENT TO
THAT PACKET NUMBER FETRANSMITTED

NOTES: EXECUTE S-FRAME COMMAND LAYER,
WINDOW SECONDARY INFORMATION BLOCKS LAYFR

DATAFLOW NAME: PRIMARY-TO-SECONDARY-I-FRAME-PACKET
ALIASES: PRIMARY-I-FRAME-PACKET
COMPOSITION: PRIMARY-TO-SECONDARY-I-FRAME =

[INVALID-PRIMARY-I-FRAME I VALID-
PRIMARY-I-FRAME-PACKET]

NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: READY-INDICATION
ALIASES: NONE
VALUES AND MEANINGS: TWO BIT CODE WITH VALUP = 00

INDICATES THAT THE SECONDAPY NODF IS
READY TO RECEIVE LEVEL-2-PACKETS

NOTES: EXECUTE S-FRAME RESPONSE IAYER,
WINDOW PRIMARY INFORMATION BILOCKS

227

Lom.

DATA ELEMENT NAME: READY-N(R)
ALIASES: N(R)
VALUES AND MEANINGS: SEE ALIAS

THE PACKET THAT THE SECONDARY NODE
IS EXPECTING TO RECEIVE NEXT

NOTES: EXECUTE S-FRAME RESPONSE LAYER,
WINDOW PRIMARY INFORMATION BLOCKS LAYER

DATA ELEMENT NAME: READY-PRIMARY-N(R)

ALIASES: PRIMARY-N(R)
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE S-FRAME COMMAND LAYER,

WINDOW SECONDARY INFORMATION BLOCKS

DATA ELEMENT NAME: REJ-READY-INDICATION
ALIASES: NONE
VALUES AND MEANINGS: THIS IS A SIGNAL THAT THE REJECTION

EXCEPTION CONDITION HAS BEEN CLEARED
NOTES: WINDOW PRIMARY, SECONDARY INFORMATION

BLOCKS LAYERS

DATAFLOW NAME: REJ-COMMAND
ALIASES: NOI"
COMPOSITION: REJ-COMMAND = PRIMARY-REJECTION-

CONDITION + REJECT-PRIMARY-N(R)
NOTES: EXECUTE S-FRAME COMMAND LAYER

DATAFLOW NAME: REJ-RESPONSE
ALIASES: NONE
COMPOSITION: REJ-RESPONSE = REJECTION-EXCEPTION-

CONDITION + REJECT-N(R)
NOTES: EXECUTE S-FRAME RESPONSE LAYER

DATA ELEMENT NAME: REJECT-N(R)
ALIASES: N(R)
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE S-FRAME RESPONSE LAYER,

WINDOW PRIMARY INFORMATION BLOCKS LAXIR

228

DATA ELEMENT NAME: REJECTION-EXCEPTION-CONDITION
ALIASES: NONE

VALUES AND MEANINGS: TWO-BIT CODE WITH VALUE = 01 THAT
INDICATES THAT THE PRIMARY-V(S) IS TO
BE RESET TO THE N(R) IN THE REJ-
RESPONSE AND ALL PACKETS SUBSEQUENT TO
THAT PACKET NUMBER RETRANSMITTED

NOTES: EXECUTE S-FRAME RESPONSE LAYER,
WINDOW PRIMARY INFORMATION BLOCKS LAYER

DATA ELEMENT NAME: RESET-COMMAND-PACKET
ALAISES: SABM-COMMAND
VALUES AND MEANINGS: SEE ALIAS
NOTES: WINDOW PRIMARY INFORMATION BLOCKS

LAYER

DATAFLOW NAME: RFSPONSE-MODIFIER-BITS
ALIASES: NONE
COMPOSITION: RESPONSE-MODIFIER-BITS = [DM-RESPONSE

TRANSMITTED-SECONDARY-CMDR(FRMR) -
RESPONSE I UA-RESPONSE]

NOTES: EXECUTE U-FRAME RESPONSE LAYER

DATAFLOW NAME: RESPONSE-SUPERVISORY-FUNCTION-BITS
ALIASES: NONE
COMPOSITION: RESPONSE-SUPERVISORY-FUNCTION-BITS

[RR-RESPONSE I RNR-RESPONSE I REJ-
RESPONSE]

NOTES: EXECUTE S-FRAME RESPONSE LAYER

DATAFLOW NAME: RNR-COMMAND
ALIASES: NONE
COMPOSITION: RNR-COMMAND = PRIMARY-BUSY-INDICATION

+ BUSY-PRIMARY-N(R)
NOTES: EXECUTE S-FRAME COMMAND LAYER

DATAFLOW NAME: RNR-RESPONSE
ALIASES: NONE
COMPOSITION: RNR-RESPONSE = BUSY-INDICATION + N(R)
NOTES: EXECUTE S-FRAME RESPONSE LAYER,

WINDOW SECONDARY INFORMATION BLOCKS
LAYER

229

-L lI. . . , |,,. . . .

DATAFLOW NAME: RR-COMMAND
ALIASES: NONE
COMPOSITION: RR-COMMAND PRIMARY-READY-INDICATION

+ READY-PRIMARY-N()
NOTES: WINDOW PRIMARY INFORMATION BLOCKS,

EXECUTE S-FRAME COMMAND LAYER
LAYER

DATAFLOW NAME: RR-RESPONS
ALIASES: NONE
COMPOSITION: SR-RESPONSE = READY-INDICATION + N(P)
NOTES: EXECUTE S-FRAME RESPONSE LAYER,

WINDOW SECONDARY INFOPMATON BLOCKS
LAYER

DATAFLOW NAME: S-FRAME-COMMAND
ALIASES: NONE
COMPOSITION: S-FRAME-COMMAND = S-FRAME-POLL-BIT +

S-FRAME-CONTOL-FIELD
NOTES: HDLC SECONDARY NODE PROTOCOL AYR

DATAFLOW NAMEE: S-FRAME-CONTOL-FIELD
ALIASES: NONE
COMPOSITION: S-FRAME-CONTROL-FIELD=I

[RR-COMMAND I RNR-COMMAND I FEJ-COMMAND]
NOTES: EXECUTE S-FRAME COMMND ELAYFR

DATA ELEMENT NAME: S-FRAME-FINAL-IT
ALIASES: FINAL-BIT
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE S-FRAME RESPONSE 1.AYFR

DATA ELYMENT NAME: S-FRAME-POL~L-PT
ALJASES : POLL-BIT
VALUE S MID MEANINGS: SEE AIAS
NOTES: EXECUTE S-FRAME COMMAND LAYFR,

WINDOW SECONDARY INFORMATION BI((F<
LAYER

7 n

DATAFLOW NAME: S-FRAME-RESPONSE
ALIASES: SECONDARY-TO-PRIMARY-S-FRAME-RESPONSEE

COMPOSITION: SEE ALIAS
NOTES: EXECUTE S-FRAME RESPONSE LAYER

DATA ELEMENT NAME: SABM-COMMAND
ALIASES: RESET-COMMAND-PACKET
VALUES AND MEANINGS: SET ASYNCHRONOUS BALANCED MODE COMMAND

CONTROL-FIELD = 1111 + POLL-BIT + 100
RESETS THE LINK TO ENABLE RECOVERY
FROM PROCEDURE ERRORS OR INITIALIZATION
OF THE LINK AT STARTUP

NOTES: HDLC PRIMARY, SECONDARY NODE PROTOCOL
LAYERS

DATA ELEMENT NAME: SABM-UA-RESPONSE
ALIASES: NONE
VALUES AND MEANINGS: SABM ACKNOWLEDGEMENT RESPONSE

BITS 1,2,6,7 1
BITS 3,4,8 = 0
CONFIRMS TO THE PRIMARY NODE THAT THE
SECONDARY NODE HAS NOW RESET ITS
WINDOWING VARIABLES AND IS READY TO
RESTART TRANSMISSION OF THE LEVEL-2-
PACKETS

NOTES: EXECUTE U-FRAME COMMAND LAYER,
WINDOW SECONDARY INFORMATION BLOCKS
LAYER

DATA ELEMENT NAME: SECONDARY-FINAL-BIT
ALIASES: NONE
VALETS AND MEANINGS: 0 = THE SECONDARY LEVEL 2 PACKET IS

NOT A RESPONSE TO A POLL FROM
THE PRIMARY NODE

I = THE SECONDARY LEVEL 2 PACKET IS
A RESPONSE TO A POLL FROM THE
PRIMARY NODE

NOTES: WINDOW SECONDARY INFORMATION BLOCKS
LAYER

DATAFOW NAME: SECONDAPY-I-FRAME-CONTPOL-FEI FD
ALI ASES: NONE
COMPOSITION: SECONDARY-I-FRAME-CONTROL-FIELD = 0 +

N(S) + I-FRAME-FINA,-PIT + N(R)
NOTES: EXECUTE SECONDAPY I-FRAME PACKET IAYFR

231

DATAFLOW NAME: SECONDARY-I-FRAME-PACKET
ALIASES: SECONDARY-TO-PRIMARY-I-FRAME-PACKET
COMPOSITION: SEE ALIAS
NOTES: EXECUTE SECONDARY I-FRAME PACKET LAYER

DATAFLOW NAME: SECONDARY-I-FRAME-PACKET-SEQUENCE-INFO
ALIASES: I-FRAME-PACKET-SEQUENCE-INFO
COMPOSITION: SEE ALIAS
NOTES: EXECUTE SECONDARY I-FRAME PACKET LAYER

DATAFLOW NAME: SECONDARY-INCOMING-BIT-STREAM
ALIASES: NONE
COMPOSITION: SECONDARY-INCOMING-BIT-STREAM =

ffSYN} + TRANSMITTED-PRIMARY-LEVEL-2-
PACKET)

NOTES: OVERVIEW LAYER

DATAFLOW NAME: SECONDARY-LEVEL-2-PACKET
ALIASES: NONE
COMPOSITION: SECONDARY-LEVEL-2-PACKET = ADDRESS-FIFLD

+ CONTROL-FIELD + (INFO-FIELD)
NOTES: FDLC SECONDARY NODE PROTOCOL LAYER

DATA ELEMENT NAME: SECONDARY-LEVEL-3-PACKET
ALIASES: SECONDARY-NODE-LEVEL-3-PACKET
VALUES AND MEANINGS: SEE ALIAS
NOTES: WINDOW SECONDARY INFORMATION BLOCKS

LAYER

DATA ELEMENT NAME: SECONDARY-NODE-LEVEL-3-PACKET
ALIASES: NONE
VALUES AND MEANINGS: ANY LEVEL 3 PACKET THAT IS TO BE

TRANSMITTED FROM A SECONDARY NODE TO
A PRIMARY NODE

NOTES: OVERVIEW LAYER

23?

DATAFLOW NAME: SECONDARY -NODE-STATUiS
ALIASES: NONE
COMPOSITION: SECONDARY-NODL-STATUS =[READY-

INDICATION + READY-N(R) IBUSY-
INDICATION + BUSY-N(R) IREJECTION-
EXCEPTION-CONDITION + REJLCT-N(R) I
+ S-FRAME-FINAL-BIT

NOTES: F-DLC PRIMARY NODE PROTOCOL LAYER

DATAFLOW NAME: SECONDARY-OUTGOING-BIT-STREAM
ALIASES: NONE
COMPOSITION: SECONDARY-OUTGOING-BIT-STREAM

{ {SYN} + SECONDARY-LEVEL-2-PACKET}
NOTES: OVERVIEW LAYFR

DATAFLOW NAME: SECONDARY-TO-PRIMARY-I-FRAME
ALIASES: SECONDARY-I-FRAME-PACKET
COMPOSITION: SECONDARY-TO-PRIMARY-I-FRAME=

[INVALID-SECONDARY-I-FRAME I VALID-
SECONDARY-I-FRAME-PACKET]

NOTES: HDLC PRIMARY NODE PROTOCOL LAYER

DATAFLOW NAME: SECONDARY-TO-PRItMARY-S-FRAMF-RESPONSE
ALIASES: S-FRAME-RESPONSE
COMPOSITION: SECONDARY-TO-PRIMARY-S-FRAME-RESPONSE=

S-FRAME-FINAL-BIT + RESPONSE-
SUPERVISORY-FUNCTION-PITS

NOTES: HDLC PRIMARY NODE PROTOCOL LAYER

DATAFLOW NAME: SECONDARY-TO-PRIMARY-U-FRAME-RESPON;SE
ALIASES: U-FRAME-RESPONSE
COMPOSITION: SECONDARY-TO-PRIMARY-U-FRAME-RESPONSE=

RESPONSE-MODIFIER-BITS + U-FRAME-
FINAL-BIT

NOTES: HDIC PRIMARY NODE PROTOCOL LAYER

DATALOW NAME: SECONDAFY-VALID-PACKET
ALIASES: NONE
COMPOSITION: SECONDARY-VALID)-PACKET = ADDRESS-FIELD

+ CONTROL-FIELD + CINFO-rFEL.D)
NOTES: HDLC PRIMARY NODE PROTOCOL LAYER

23

DATA ELEMENT NAME: SYN
ALIASES: NONE
VALUES AND MEANINGS: SYNCHRONIZATION CHARACTER

THE OCTET (01111110)
NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: TRANSMITTED-PRIMARY-NODE-LEVEL-3-PACKET

ALIASES: NONE
VALUES AND MEANINGS: ANY LEVEL 3 PACKET THAT HAS BEEN

TRANSMITTED FROM A PRIMARY NODE TO A
SECONDARY NODE

NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: TRANSMITTED-SABM-COMMAND
ALIASES: NONE
VALUES AND MEANINGS: TRANSMITTED SET ANSYNCHRONOUS BALANCED

MODE COMMAND
BITS 1,2,3,4,6 = 1
BITS 7,8 = 0
COMMANDS THE SECONDARY NODE TO RESET
THE LINK WINDOWING VARIABLES

NOTES: EXECUTE U-FRAME COMMAID LAYER

DATA ELEMENT NAME: TRANSMITTED-SECONDARY-CMDR(FRMR)-

RESPONSE
ALIASES: NONE
VALUES AND MEANINGS: BITS 1,2,3,8 = 1

BITS 4,6,7 = 0
INDICATES THAT A LOCAL PROCEDURE ERROR
HAS OCCURRED AT THE SECONDARY NODE AND
REQUESTS THe PRIMARY NODE TO RESET THE
LINK

NOTES: EXECUTE U-FRAME RESPONSE LAYER

DATA ELEMENT NAME: TRAN SM ITTED-SECONDARY-LEVEL-3-PACKET
ALIASES: TRAN SMITTED-SECONDARY -NODE-LEVEL-3-

PACKET
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE SECONDARY I-FRAME PACKET LAYFR

234

DATA ELEMENT NAME: TRAN SMITTED-SECONDARY-NODE-LEVEL-3 -
PACKET

ALIASES: TRANSMITTED-SECONDARY-LEVEL-3-PACKET
VALUES AND MEANINGS: ANY LEVEL 3 PACKET THAT HAS BEEN

TRANSMITTED FROM A PRIMARY NODE TO A
SECONDARY NODE

NOTES: OVERVIEW LAYER

DATAFLOW NAME: U-FRAME-COMMAND
ALIASES: NONE
COMPOSITION: U-FRAME-COMMAND = COMMAND-MODIFIER-

BITS + U-FRAME-POLL-BIT
NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

DATA ELFMENT NAME: U-FRAME-FINAL-BIT

ALIASES: FINAL-BIT
VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE U-FRAME RESPONSE LAYER

DATA ELEMENT NAME: U-FRAME-POLL-BIT
ALIASES: POLL-BIT

VALUES AND MEANINGS: SEE ALIAS
NOTES: EXECUTE U-FRAME COMMAND LAYER,

WINDOW SECONDARY INFORMATION BLOCKS
LAYER

DATAFLOW NAME: U-FRAME-RESET-COMMAND
ALIASES: NONE
COMPOSITION: U-FRAME-RESET-COMMAND = [SABM-COMMAND

I LINK-STATUS] + U-FRAME-FINAL-BIT
NOTES: FDLC PRIMARY NODE PROTOCOL LAYER

DATAFLOW NAME: U-FRAME-RESPONSE
ALIASES: SECONDARY-TO-PRIMARY-U-FRAME-RESPONSE
COMPOSITION: SEE ALIAS
NOTES: EXECUTE U-FRAME PESPONS 1,APER

235

DATA ELEMENT NAME: UA-RESPONSE
ALIASES: NONE
VALUES AND MEANINGS: BITS 1,2,6,7 = 1

BITS 3,4,8 = 0
INDICATES THAT THE COMMAND SENT BY THE
PRIMARY NODE HAS BEEN EXECUTED

NOTES: EXECUTE U-FRAME RESPONSE LAYER

DATAFLOW NAME: UNSTUFFED-PACKET

ALIASES: NONE
COMPOSITION: UNSTUFFED-PACKET = [VALID-LENGTH-

PACKET I INVALID-LENGTH-PACKET]
NOTES: EXTRACT VALID PACKET LAYER

DATA ELEMENT NAME: UPDATED-LOWER-WINDOW-EDGE
ALIASES: NONE
VALUES AND MEANINGS: THIS IS AN INTEGER BETWEEN 0 AND 7

THAT IS ONE GREATER THAN THE HIGHEST
PACKET SEQUENCE NUMBER THAT CAN BE
SENT UNTIL THE LOWER-WINDOW-EDGE IS
AGAIN UPDATED

NOTES: WINDOW PRIMARY, SECONDARY INFORMATION

BLOCKS LAYERS

DATAFLOW NAME: VALID-LENGTH-PACKET
ALIASES: NONE
COMPOSITION: VALID-LENGTH-PACKET = FCS-BLOCK +

[FCS-ERROR-PACKET I VALID-PACKET]
NOTES: EXTRACT VALID PACKET LAYER

DATAFLOW NAME: VALID-PACKET
ALIASES: VALID-PRIMARY-PACKET,

SECONDARY-VALID-PACKET
COMPOSITION: SEE ALIASES
NOTES: EXTRACT VALID PACKET LAYER

DATAFLOW NAME: VALID-PRIMARY-I-FRAME-PACKET
ALIASES: NONE
COMPOSITION: VALID-PRIMARY-I-FRAME-PACKET =

TRAN SMITTED-PRI MARY-NODE-LEVEL-3 -PACKET
+ PRIMARY-I-FRAME-CONTROL-FIELD

NOTES: EXECUTE PRIMARY I-FRAME PACKET LAYER

DATALOW NAME: VALID-PRIMARY-PACKET
ALIASES: NONE
COMPOSITION: VALID-PRIMARY-PACKET = ADDRESS-FIELD

+ CONTROL-FIELD + (INFO-FIELD)
NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

DATAFLOW NAME: VALID-SECONDARY-I-FRAME-PACKET
ALIASES: NONE .4
COMPOSITION: VALID-SECONDARY-I-FRAME-PACKET

TRANSMITTED-SECONDARY-I-FRAME-PACKET
+ SECONDARY-I-FRAME-CONTROL-FIELD

NOTES: EXECUTE SECONDARY I-FRAME PACKET LAYER

DATAFLOW NAME: WINDOWED-I-FRAME
ALIASES: NONE
COMPOSITION: WINDOWED-I-FRAME = LEVEL-3-

PACKET + N(R) + N(S) + [POLL-BIT
I FINAL-BIT]

NOTES: WINDOW PRIMARY, SECONDARY INFORMATION
BLOCKS LAYER

237

FILE DEFINITIONS

FILE OR DATABASE NAME: PENDING-STATE-CHANGE
ALIASES: NONE
COMPOSITION: PENDING-STATE-CHANGE = [DISCONNECT-

LINK I SETUP-LINK]
ORGANIZATION: SINGLE VARIABLE

NOTES: EXECUTE U-FRAME RESPONSE LAYER

FILE OR DATABASE NAME: PRIMARY-V(R)
ALIASES: NONE
COMPOSITION: PRIMARY-V(R) IS THE NEXT PACKET

EXPECTED NUMBER
IT CAN RANGE FROM 0 TO 7

ORGANIZATION: SINGLE VARIABLE
NOTES: EXECUTE SECONDARY I-FRAME PACKET LAYER

FILE OR DATABASE NAME: PRIMARY-V(S)
ALIASES: NONE
COMPOSITION: PRIMARY-V(S) IS AN INTEGER BETWEEN

0 AND 7 THAT INDICATES THE SEQUENCE
NUMBER OF THE NEXT I-FRAME TO BE SENT

ORGANIZATION: SINGLE VARIABLE
NOTES: WINDOW PRIMARY INFORMATION BLOCKS

LAYER

FILE OR DATABASE NAME: SECONDARY-V(R)
ALIASES: NONE
COMPOSITION: SECONDARY-V(R) IS THE NEXT PACKET

EXPECTED NUMBER
IT CAN RANGE FROM 0 TO 7

ORGANIZATION: SINGLE VARIABLE
NOTES: HDLC SECONDARY NODE PROTOCOL LAYER

238

FILE OR DATABASE NAME: SECONDARY-V(S)
ALIASES: NONE
COMPOSITION: SECONDARY-V(S) IS AN INTEGER BETWEEN

0 AND 7 THAT INDICATES THE SEQUENCE
NUMBER OF THE NEXT I-FRAME TO BE SENT

ORGANIZATION: SINGLE VARIABLE
NOTES: WINDOW SECONDARY INFORMATION BLOCKS

LAYER

"39

PROCESS SPECIFICATIONS

PROCESS NAME: EXTRACT INFORIATION BETWEEN FLAGS
PROCESS NUMBER: 1.1.1
PROCESS DESCRIPTION:
Strip off first SYN (flag character)
While SYN and ABORT not encountered, assemble LEVEL-2-PACKET
If ABORT encountered then discard partially assembled
LEVEL-2-PACKET as an ABORTED-PACKET

Else output LEVEL-2-PACKET when second SYN is encountered

PROCESS NAME: UNSTUFF 0'S
PROCESS NUMBER: 1.1.2
PROCESS DESCRIPTION:
Whenever five consecutive l's are followed by a 0,

delete the 0 from the LEVEL-2-PACKET
Output the new packet as an UNSTUFFED-PACKET

PROCESS NAME: CHECK LENGTH
PROCESS NUMBER: 1.1.3
PROCESS DESCRIPTION:
If UNSTUFFED-PACKET is less than 32 bits long then it is an

INVALID-LENGTH-PACKET
Else it is a VALID-LENGTH-PACKET

PROCESS NAME: GENERATE CRC REMAINDER
PROCESS NUMBER: 1.1.4
PROCESS DESCRIPTION:
Divide the VALID-LENGTH-PACKET by the CRC polynomial which
is x**16 + x**12 + x**5 + 1 modulo 2

Multiply the VALID-LENGTH-PACKET by x**16 and then divide it
by the CRC polynomial
Add the remainders of the above two operations on the
VALID-LENGTH-PACKET modulo 2 and take the l's complement

Output the result as the LOCALLY-GENERATED-CRC-POLYNOMIAL

240

PROCESS NAME: CHECK FCS BLOCK
PROCESS NUMBER:].].5
PROCESS DESCRIPTION:
If the FCS-BLOCK and the LOCALLY-GENERATED-CRC-POLYNOMIAL
are equal then the VALID-LENGTH-PACKET is a VALID-PACKET

Else it is a FCS-ERROR-PACKET

PROCESS NAME: DECODE SECONDARY PACKET ADDRESS AND
CONTROL FIELDS

PROCESS NUMBER: 1.2
PROCESS DESCRIPTION:
If ADDRESS-FIELD is (10000000) then

if Bit 1 of CONTROL-FIELD = 0
then SECONDARY-VALID-PACKET is SECONDARY-TO-PRIMARY-I-FRAME

else if Fit 2 of CONTROL-FIELD = 0
then SECONDARY-VALID-PACKET is SECONDARY-TO-PRIMARY-S-

FRAME-RESPONSE
else SECONDARY-VALID-PACKET is SECONDARY-TO-PRIMARY-U-FRA-!E-

RESPONSE
Else SECONDARY-VALID-PACKET is an INVALID-SECONDARY-PACKET-

TYPE

PROCESS NAME: VALIDATE I-FRAME PACKET
PROCESS NUMBER: 1.3.1
PROCESS DESCRIPTION:
If N(S) of the SECONDARY-I-FRAME-PACKET = PRIMARY-V(R)

then the SECONDARY-I-FRAME-PACKET is a VALID-SECONDARY-
I-FRAME-PACKET

Else it is an INVALID-SECONDAPY-N(P)-I-FRAME

PROCTSS NAME: PARSE I-FRAME
PROCESS NUMBER: 1.3.2
PROCESS DESCRIPTION:
Output the first octet of the VALID-SECONDARY-I-FRAME as the

SECONDARY-I-FRAME-CONTROL-FI EI.,D
Output Bit 5 of the first octet of the VALID-SECONDARY-I-

FRAME as the I-FRAME-FINAL-PIT
Output all octets followinq the first octet as the

TPAN SM ITTED-SECONDARY-LEVEL-3-PACKET

PROCESS NAME: PARSE I-FRAME CONTROL FIFLD
PROCESS NUMBER: 1.3.3
PROCESS DESCRIPTION:
Output Bits 2,3,4 as N(S)
Output Bits 6,7,8 as N(P)

2,1

PROCESS NAME: PARSE S-FRAME RESPONSE CONTROL FIELD
PROCESS NUMBER: 1.4.1
PROCESS DESCRIPTION:
RESPONSE-SUPERVISORY-FUNCTION-BITS = Bits 3,4,6,7,8 of

S-FRAME-RESPONSE-CONTROL-FIELD
S-FRAME-FINAL-BIT = Bit 5 of S-FRAME-CONTROL-FIELD

PROCESS NAME: DECODE RESPONSE SUPERVISORY BITS
PROCESS NUMBER: 1.4.2
PROCESS DESCRIPTION:
Case Bits 3,4 of

00: RR-RESPONSE
10: RNR-RESPONSE
01: REJ-RESPONSE
11: INVALID-S-FRAME-RESPONSE

PROCESS NAME: SEND READY STATUS AND EXTRACT N(R)
PROCESS NUMBER: 1.4.3
PROCESS DESCRIPTION:
Output READY-INDICATION
Set READY-N(R) = Bits 6,7,8 of PR-RESPONSE

PROCESS NAME: SEND BUSY STATUS AND EXTRACT N(R)
PROCESS NUMBER: 1.4.4
PROCESS DESCRIPTION:
Output BUSY-INDICATION
Set BUSY-N(R) = Bits 6,7,8 of RNR-RESPONSE

PROCESS NAME: SEND REJECT CONDITION AND EXTRACT N(R)
PROCESS NUMBER: 1.4.5
PROCESS DESCRIPTION:
Output REJECTION-EXCEPTION-CONDITION
Set REJECT-N(R) = Bits 6,7,8 of REJ-RESPONSE

PROCESS NAME: PARSE U-FRAME RESPONSE CONTROL FIELD
PROCESS NUMBER: 1.5.1
PROCESS DESCRIPTION:
RESPONSE-MODIFIER-BITS Bits 3,4,6,7,8 of the U-FRAME-

RESPONSE
U-FRAME-FINAL-BIT = Bit 5 of the U-FRAME-RESPONSE

242

_ _ _ _ _ _ _ _ _

PROCESS NAME: DECODE RESPONSE MODIFIER BITS
PROCESS NUMBER: 1.5.2
PROCESS DESCRIPTION:
Case Bits 3,4,6,7,8 of

(11000): Output DM-RESPONSE
(10001): Output CMDR(FRMR)-RESPONSE
(00110) : Output UA-RESPONSE

Otherwise: Output INVALID-U-FRAME-RESPONSE

PROCESS NAME: SET UP LINK
PROCESS NUMBER: 1.5.3
PROCESS DESCRIPTION:
If DM-RESPONSE or TRANSMITTED-SECONDARY-CMDR(FRMR)-RESPONSE

is received then output an SABM-COMMAND and set the
PENDING-STATE-CHANGE to LINK-SETUP state

PROCESS NAME: EXECUTE PENDING STATE CHANGE
PROCESS NUMBER: 1.5.4
PROCESS DESCRIPTION:
If UA-RESPONSE is received then set LINK-STATUS to PENDING-
STATE-CHANGE

PROCLES NAME: RESET V(S)
PROCESS NUMBER: 3.6.1
PROCESS DESCRIPTION:
When a REJECTION-EXCEPTION-CONDITION is received

Update PRIMARY-V(S) to equal the REJECT-N(R)
Output a REJ-READY-INDICATION

PROCESS NAME: UPDATE LOWER WINDOW EDGE
PROCESS NUMPER:].6.2
PROCESS DFS j :PTION:
Set UPDATED-t,)WER-WINDOW-EDGE = N(R)

PROCESS NAME: POLL SECONDARY FOR READY STATI
PROCESS NUMBER: 1.6.3
PROCESS DESCRIPTION:
If BUSY-INDICATION is received then after POLL-DELAY output

an RR-COMMAND

243

PROCESS NAME: PLACE I-FRAME IN X.25 LINK Q[UFE
PROCESS NUMBER: 1.6.4
PROCESS DESCRIPTION:
While LINK-STATUS is in READY state

and PRIMARY-V(S) < UPDATED-LOWER-WINDOW-EDGE - 1
and no REJ-READY-INDICATION is present

Send PRIMARY-LEVEL-3-PACKET as WINDOWED-I-FRAME
with N(R) = PRIMARY-V(R)

N(S) = PRIMARY-V(S)
Increment PRIMARY-V(S)

If REJ-READY-INDICATION then
Retransmit PRIMARY-LEVEL-3-PACKETs starting with the

WINDOWED-I-FRAME with N(S) = PRIMARY-V(S)
Increment PRIMARY-V(S)

PROCESS NAME: SELECT PACKET FOR X.25 LINK
PROCESS NUMBER: 1.6.5
PROCESS DESCRIPTION:
S "ct packets from the transmit queue according to the

following priority
Priority 1: SABM-COMMAND or RESET-COMMAND-PACKET
Priority 2: RR-COMMAND
Priority 3: WINDOWED-I-FRAME

If the queue is empty for MAX-TIME-BETWEEN-UPDATES then send
an RR-RESPONSE with N(R) = PRIMARY-N(R) to update
SECONDARY NODE LOWER-WINDOW-EDGE

Generate FCS-BLOCK
Divide the VALID-LENGTH-PACKET by the CRC polynomial which
is x**16 + x**12 + x**5 + 1 modulo 2

Multiply the VALID-LENGTH-PACKET by x**16 and then divide
it by the CRC polynomial

Add the remainders of the above two operations on the
VALID-LENGTH-PACKET modulo 2 and take the I's complement

The result is the FCS-BLOCK
Append the FCS-BLOCK to the packet to be transmitted and

output the combination as a PRIMARY-LEVEL-2-PACKET

PROCESS NAME: RECOVER FROM PROCEDURE ERROR
PROCESS NUMBER: 1.7
PROCESS DESCRIPTION:
If an INVALID-LENGTfH-SECONDARY-PACKET or an TNVALIT-
SECONDARY-PACKET-TYPE or an INVAL]T[-SECONDAEY- (1:)-I-FRAMF
then reset the link using an SABM-COMMAND

244

PROCESS NAME: SEND PACKET
PROCESS NUMBER: 1.8

PROCESS DESCRIPTION:

Send continuous SYNs while there are no LEVEL-2-PACKETs to
transmit

When a LEVEL-2-PACKET is available, add a SYN to the front
of the packet and another SYN to the rear of the packet and
insert it into the outgoing bit stream

PROCESS NAME: TRANSMIT BIT STREAMS
PROCESS NUMBER: 2
PROCESS DESCRIPTION:
Use the Physical Level Protocol to transmit the PRIMARY-
OUTGOING-BIT-STREAM to the SECONDARY NODE and the SECONDARY-
OUTGOING-BIT-STREAM to the PRIMARY NODE

PROCESS NAME: EXTRACT VALID PACKET
PROCESS NUMBER: 3.1
PROCESS DESCRIPTION: SEE PROCESSES 1.1.] THROUGH 1.1.5

PROCESS NAME: DECODE PRIMARY PACKET ADDRESS AND
CONTROL FIELDS

PROCESS NUMBER: 3.2
PROCESS DESCRIPTION:
If ADDRESS-FIELD is (10000000) then

if Bit I of CONTROL-FIELD = 0
then VALID-PRIMARY-PACKET is an PRIMARY-TO-SECONDARY-I-

FRAME-PACKET
else if Pit 2 of CONTROL-FIELD = 0 then VALID-PRIMARY-

PACKET is an S-FRAME-COMMAND
else VALID-PRIMARY-PACKET is a (1-FRAME-COMMAND

Else VALID-PRIMARY-PACKET is an INVALID-PRIMARY-PACKET-TYPE

PROCESS NAME: VALIDATE I-FRAME PACKET
PROCESS NUMBER: 3.3.1
PROCESS DESCRIPTION:
If N(S) of the PRIMARY-I-FRAME-PACKET = SECONDARY-V(R)

then the PRIMARY-I-FRAME-PACKET is a VALID-PRIMARY-
I-FRAME-PACKET

Else it is an OUT-OF-SEQUENCE-PRIMARY-I-FRAME

249

PROCESS NAME: PARSE I-FRAME
PROCESS NUMBER: 3.3.2
PROCESS DESCRIPTION:
Output the first octet of the VALID-PRIMARY-I-FRAME as the
PRIMARY-I-FRAME-CONTROL-FIELD

Output Bit 5 of the first octet of the VALID-PRIMARY-I-
FRAME as the I-FRAME-POLL-BIT

Output all octets following the first octet as the
TRANSMITTED-PRIMARY-NODE-LEVEL-3-PACKET

PROCESS NAME: PARSE I-FRAME CONTROL FIELD
PROCESS NUMBER: 3.3.3
PROCESS DESCRIPTION:
Output Bits 2,3,4 as N(S)
Output Bits 6,7,8 as N(R)

PROCESS NAME: PARSE S-FRAME COMMAND
PROCESS NUMBER: 3.4.1
PROCESS DESCRIPTION:
S-FRAME-CONTROL-FIELD = First octet of S-FRAME-COMMAND
S-FRAME-POLL-BIT = Bit 5 of S-FRAME-CONTROL-FIELD

PROCESS NAME: PARSE S-FRAME CONTROL FIELD
PROCESS NUMBER: 3.4.2
PROCESS DESCRIPTION:
Case Bits 3,4 of

00: RR-COMMAND
10: RNR-COMMAND
01: REJ-COMMAND
11: INVALID-S-FRAME-COMMAND

PROCESS NAME: SEND READY STATUS AND EXTRACT N(R)
PROCESS NUMBER: 3.4.3
PROCESS DESCRIPTION:
Output READY-INDICATION
Set PRIMARY-READY-N(R) = Bits 6,7,8 of RR-COMMAND

PROCESS NAME: SEND BUSY STATUS AND EXTRACT N(P)
PROCESS NUMBER: 3.A.4
PROCESS DESCRIPTION:
Output PRIMARY-BUSY-INDICATION
Set BUSY-PRIMARY-N(R) = Bits 6,7,8 of RNR-COMMAND

246

PROCESS NAME: SEND REJECT CONDITION AND EXTRACT N(R)
PROCESS NUMBER: 3.4.5
PROCESS DFSCRIPTION:
Output PRIMARY-REJECTION-CONDITION
Set REJECT-PRIMARY-N(R) = Bits 6,7,8 of PEJ-COMMAND

PROCESS NAME: PARSE t]-FRAME COMMAND CONTROL FIELD
PROCESS NUMBER: 3.5.1
PROCESS DESCRIPTION:
COMMAND-MODIFIER-BITS = Bits 3,4,6,7,8 of the U-FRAME-

COMMAND
U-FRAME-POLL-BIT = Bit 5 of the U-FRAME-COMMAND

PROCESS NAME: DECODE COMMAND MODIFIER BITS
PROCESS NUMBER: 3.5.2
PROCESS DESCRIPTION:
Case Bits 3,4,6,7,8 of

(11100): Output TRANSMITTED-SABM-COMMAND
(00010) : Output DISC-COMMAND

Otherwise: Output INVALID-U-FRAME-COMMAND

PROCESS NAME: DISCONNECT LINK
PROCESS NUMBER: 3.5.3
PROCESS DESCRIPTION:
Upon receipt of a DISC-COMMAND

If not in Disconnected state then
Set SECONDARY NODE state to Disconnected state
Output DISC-UA-RESPONSE
Else output DM-RESPONSE

PROCESS NAME: SET UP LINK
PROCESS NUMBER: 3.5.4
PROCESS DESCRIPTION:

Upon receipt of a TRANSMITTED-SABM-COMMAND
Reset SFCONDARY-V(R) and SECONDARY-V(S) to 0
Set SECONDARY NODE: state to Ready
Output SABM-UA-RESPONSE

247

r

PROCESS NAME: RESET V(S)
PROCESS NUMBER: 3.6.1
PROCESS DESCRIPTION:
When a PRIMARY-REJECTION-CONDITION is received

Update SECONDARY-V(S) to equal the PRIMARY-REJECT-N(R)
Output a REJ-READY-INDICATION

When a SABM-UA-RESPONSE is received reset SFCONDARY-V(S) to 0

PROCESS NAME: UPDATE LOWER WINDOW EDGE
PROCESS NUMBER: 3.6.2
PROCESS DESCRIPTION:
Set UPDATED-LOWER-WINDOW-EDGE = N(R)

PROCESS NAME: SET RESPONSE FINAL BIT
PROCESS NUMBER: 3.6.3
PROCESS DESCRIPTION:
If POLL-BIT = 1 then set SECONDARY-FINAL-BIT = 1

PROCESS NAME: PLACE I-FRAME IN X.25 LINK
PROCESS NUMBER: 3.6.4
PROCESS DESCRIPTION:

While SECONDARY NODE is in Ready state
and SECONDARY-V(S) < UPDATED-LOWER-WINDOW-EDGE - I
and no REJ-READY-INDICATION is present

Send SECONDARY-LEVEL-3-PACKET as WINDOWED-I-FRAME
with N(R) = SECONDARY-V(R)

N(S) = SECONDARY-V(S)
Increment SECONDARY-V(S)

If REJ-READY-INDICATION then
Retransmit SECONDARY-LEVEL-3-PACKETs starting with the

WINDOWED-I-FRAME with N(S) = SECONDARY-V(S)
Increment SECONDAPY-V(S)

PROCESS NAME: SELECT PACKET FOR X.25 LINK
PROCESS NUMBER: 3.6.5
PROCESS DFSCRIPTION:
Select packets from the transmit queue according to the

following priority
Priority I: CMDR(FRMP)-RESPONSF
Priority 2: DISC-UA-REPONSF7 or DM-RESPONSV
Priority 3: PR-RESPONSE or PNR-RESPONSE
Priority 4: WINDOWE-I-FRAME

If the queue is empty for r',AX-TIME-PEThEIEN-UPDATFS then ,-cnd
an RP-RESPONSE with N(P) = SECONDARY-N(R) to update
PRIMARY NODE I,OWVER-WINDOW-EDGE

24R j

Generate FCS-BLOCK

Divide the VALID-LENGTH-PACKET by the CRC polynomial which
is x**16 + x**12 + x**5 + 1 modulo 2

Multiply the VALID-LENGTH-PACKET by x**16 and then divide
it by the CRC polynomial

Add the remainders of the above two operations on the
VALID-LENGTH-PACKET modulo 2 and take the l's complement

The result is the FCS-BLOCK
Append the FCS-BLOCK to the packet to be transmitted
Set FINAL-BIT if SECONDARY-FINAL-BIT is set
Output a SECONDARY-LEVEL-2-PACKET

PROCESS NAME: RESPOND TO STATUS REQUEST
PROCESS NUMBER: 3.6.6
PROCESS DESCRIPTION:
If POLL-BIT is set then

if SECONDARY NODE is in Ready state then output RR-RESPONSE
else output PNR-RESPONSE

PROCESS NAME: REQUEST RECOVERY FROM PROCEDURE ERROR
PROCESS NUMBER: 3.7
PROCESS DESCRIPTION:
If an INVALID-LENGTH-PRIMARY-PACKET or an INVALID-PRIVARY-

PACKET-TYPE or an OUT-OF-SEQUENCE-PRIMARY-I-FRAME-PACKET
is received then output a CMDR(FRMR)-RESPONSE

PROCESS NAME: SEND PACKET
PROCESS NUMBER: 3.8
PROCESS DESCPIPTION: SEE PROCESS 1.8

249

Appendix D

Module Structure Charts

This appendix contains the complete set of module

structure charts needed to specify the design of the

software for DELNET. These charts were drawn using Yourdon

and Constantine's structured design techniques (Ref. 22).

250

retiiork
O etatirg

bystErn

USXT Camund t

Get Bealte
User 1) Rit

CGMII-d (bma-id User
Rmpaw

local G3MM-d R-,msmtted

Iber EKKute

CS NeMlcrk Caumid User

rbited CS

locaj:R-es

Ermite Bzajte
local lleetqcrk

Ccnmff)d Commid

251

local Cammd I=LPes

5ceate
1=1

ccmmffld

Rated
local
Cbmim-id

1=1 ResM-se

Rate 5(eclte Rule

local Rated Tocal

CcmTend Imal
Gimund

Execute local F.,wcLte
ITCst-toqbst Host-t:o ibst

Protocol Protocol

252

Nebxurk .hirl rd

Neti~rkNetwork

Trmmtttte

*Nl ; Trmed etted

ProtocolPGotrco

253

254

Trasit ted oa

Sessionl Ccntrol_ Ssso

Control
Sessio

logUsr Irg Uger
NethAxk Oit of

N'etwork

User ID Lis t of
-F'ilIe

Cet list of
File Trzmsfc'rs

255

Ail

15

256

257

258

Host Call
Nodie Call SC'tIF itcTt,
setxjpaLdt 4.SQcU~ CalIr1b1t

to CalTad fsthI tf-
Pa~t

Place
chmml in

Data Tisfer'
State

Cal e t o alig k;

1kwt to Called ILkt
Data Packet h __rrp Dt

HostData / cs atta Host DataPacket

GetDaaIt
tkta Pacht s

TVnirua

Protcol4

259

Trirte &,quJl3~ eIQilfO

Ibta Packet

EdrmCL Ila;

Ibta Packet, '~CpeePce

Carpletie hckot_

Iaceti Datto

Virt ti I
Ten-Lm1
Protcoxi

260

Tiisitted No-k Ttcmptqnfirnuti

Reonipt
of Intmrnpt

Tmsntted

Da~ta to

26 1

'16

262 j

~r~P II

~~ 6-

Faited Called Node Packet, 1

Pakket eqUE Pcke

Pxed ~ ~ Ca Iale M4r~sr Node

PPacket

tal (1 illkvhr"ta

Internied'tr Pa6t Crvisryih

Peceivedd Call(llledt

kcepte7Packc Pack t

Interr of Cal
Stmuisoy icae

264e~

SAi

7 Mod

F
6

R

AJ 4J
~- ~. 1 ~ 41

/0

266

= -Hte 1irN "Ik I,Calledst S~iisory acike lin&kHtlI CalleHw PktFadIet

Routed
Qilhirg Node

Pbcdet

Wl P~t -he %e. \

Intemrn %btify wirdcw
Nd-tbs'Called lia;t No-to-ibt

26S7

KS

26 8

Node- Call M~aiamePacket I wst Qil Mart~ePc~t
qL&-dGiQfled Wbst t6o(alh HortDtaPackt

n cl aTinfer
State

Callein~ kt to Called Ijt t

Get Hcst Cet lb4~
Data Racket Ltern

26 9

270

271

41
Lin

L~

4.jj

27)

&'mddar3 -
I-Prr ini

TI-.Dq E ted
V~alid lwl37~

Validate F-ze FZc
I-Rure I-Phv xtero
Pacl~et Fiel

27

Rspnse

Res~~se

Scctlary-
R&sxi s NodeStab-is

to TvIvisry

Scnryt , VPrhrmy S4Tii-Iloctichl

S-Prmie ThiilBit tbLptu -ndinl ,

Rejm N
W7 Re~me RJ epr

_RLR-v x i G§mG~Enrd,

U-Frn~e

friuy~ETI = dfierBits LrjzJstatus

l'1bdfn-rBit,,
UL-Frm,2_ThxnlBit

Parse U-FMnre
U-Fr~ri-

Rcspunse tted

ER 1, -P' Pdif StateCunie
State ar-Tkge

set pac4 T
bra<tatc (

2 7

.SA

2 7~

4-0v

*UA PO.

co\

2377

"AD-AIOO A22 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCI400-ETC F/6 9/2
IDESIGN OF A LOCAL COMPUTER NETWORK FOR THE AIR FORCE INSTITUTE -- ETC(U)
IMAR 81 W C HOBARTI UNCLASSIFIED AFIT/GE/EE/SIM-3

.4EEEhEE7

mEEEEE7hE-h 1

E~ecute
Prinn
Packet

_P mtr i dA
id~nu~L raam~tted

Valibte Parse I-Fumie
Packue I-Fime Caitrol.

Pad~t Feld

278

S-Frare Camre~, primnyNodeStatus

Thwcute
&-Fraim

__ M- -laeQ= Pmrodafn bkStatim

Ccitro~ied - Qz~rolield-

Farse Thcute
S-ftwe

S

279

becte
U-Fra

Q)warxE Bits.~ Bi

Ew.ckte

cBCammd' %wtAHn

Dsc Ca meM

Lizt Link

280

Ct4

4-40

281

Source Code for the Network Command Language Interpreter

This appendix contains the PASCAL source code for the

network command language interpreter. In its present

configuration, the program is structured to allow testing of

the high-level protocol modules.

282

Ix

-

T ix

,C O f- 0 CO
Wa ci a 0 2

w I- Li u-0 U

9X L3 I - C --
La >- On La Li 0 xry

r x ub 0 .a
Z.td 1- 0- 9- 0 - >-. (

w. 0. c f).. 0.- C1 a-l
Ix 2 -M *- La -, XC S

itL aC 0 ED 0u Ct) ZU ..
.4. - tW L x 1 stt ED) 9

XC I .i -j CD Ct cc ew I- 0 1 1- 2 = 0 -U
xE ri 1- U ccm- j 0 -o Cc cc- ccM C-'m In <a z wI-r 0 i4 0 L Ea w La ?-al-tb

1- -cxw U L, COC U 0.w z LS xz tc inL a u 9L C-woW_
oo 0 ca>- ca-) 9- 0 ~ > 0 C t- t
ED ED S-I- La It00 C-

0r a- - ccw c c4 *~ a-. 0.-.w
MO N a- a na- a .-- o a~ CC aC

La OIx - (~ 0 ~ W ~ aU a.
Ntj 9- 2- P.-. Z ~ f* Ia 0

CC jc4r I I C-4 tO -b- " r4)4X tC b N.jNrir 4 OC(r;C4 4t0 r

00 C 0 0 -l Cl 0.0 C01 Uc'I 0 - C ,0 ,c
00 a00 C, 0 Li 9- 0

O-0 0 C. 0alC , C ,C ~ . - , O o - c0

Law .l wbI-
r:. LLra1t 0 M bI

1aC

a--- ---- ---- ---- ---- -cc C, n Cr N1J:c2 bN0cCr ardrrC r

Law lb~ttalbl mC0-r-~bfl

I-CT

283

W 2L

0 i
2 W

La
a cc

C 24.

.4 2: x 0 2
W Q- -C LaW zC

-MLa La -- 94

0 2c a * z 6
C3 W. 0 m4 -2 r

Lal (a(.c 0 W0
(nc *. T x -La 2

.. CC)-= La -a

It 9 IT 0 r2 C
'I C4 0Z 22 X~ CL C, W

W. 1 cc -a xLa
*r 04 04 a. LI L W 2M

0 1c La c - a 2 a 0 W

0. 4 C La L
-2 to W4 La W - 0 2 < rIX I .W-x iWA:
x.L *. W cc * ccn CC 2 X a z Q x

02La if W2 4. La -Z L LLa

ix ,-D - rc w ccc 2 44 C- W - S
La 0 co 2c La 0 x m a

.4rI I. -M* L C, I W -. ~-
'aOXC CCa -M r lt 0. r.. La o

04 La~c L0 CC X cc- .. I L

0A W*.C C-1 0 0. a. CW -. ..) - * -
cm a2 m01 * 1 LaO r o w -a 0i -

L' 4L cc Z La Z a2 .N 00 In.* 0 4
c4i ~ 4*Q Li W~L w *X *L -a. 1 Z; L00 W 04 M2 . La -00t.~ '-CL C- OZ 4-0421-

D. . W i cc <ca~W 0 *Mi 0 X. WL2aL
xcC *i ci .. a 0C 1 0.C #) 4 fl' la La4 40..

CL 1 2 C 2.14 C CXC -C 2 0 &4cJ
Qn ca La W-..C. 4.C.LE. L-L L C cC

4W 4 Wu.4 C. CL00crI *1.Ll0L-

x lCNt00000 n0 0I * .. 0~WC C- 1 0 n0C2 L -0 0 ,0 C, nJC 0 0fla1 0
W , 0 . C, 4 1) 21LL C. '/ 1 40 4.. 041 f*(0 4+C,)-

vI bi Al-k~ 0 b)b .0 N Nr N Naa I mi)CC ccaC-L4-M OW m-.4Wcc,0

00 2 La C 0 1- II .4 CZZ~ CU LaLC C.i~f~if 0.4.

- -C C ,40 C 0 0 * L 0 + C C .. C Z . J . . U D . C
I ~ ~ ~ ~ ~ ~ ~ ~~~O t. C C 0'.A * 24-4.-,c a C 0 l

La ~ L 0 La -a I2ta
bi L V, I-C 'I, I 'I2 0W C 1u M3 La.- 0V

00 C LI a 0C La CC 0d-....28 4.L

C C6

CLL

-
It,

- IL ix j
In C L

ix wLL

La- a a:
.-.a L CL .j

ce o- L m
CLC o- "w L

Ix- La c3 - c-

mc~~ *-t a * u
CLOO I& ZL 'mJ 4

in l 4 I In 4 0 T -C
In oC It a: ,3f

Co La La- CL- It.

cd txz o uZV
CL0 C wt oCIm a

rip. C< D r -

cc (3 L - -1C nl'C.4.-
-- m 6(0 .4 La 0y. 2.4-.-

I- CL x - *. o w- I.c2 I
00 2 La C I 2 ca a fl ~ i

w w La l'5 oL- oU--3 CC3 a

I I -

LiD

La- En1 0l12 0-.0...4'CJ.
00Lw
z I

r a

La z C oo o , 1 -o 1

J- -r C D 0 riI

3<~C .Jf 00 007-000 0 000 00

La ~ ~ ~ 0 2r. COCOlO~rrlO O

9- 100- .r rnan'1-u> 285ltI '?

z2

2

U) cc .a

- 0 w Wcecc 0 z~ CL
La CC. QC . - '- I

0o CD U C Cc Ia w3 0s (Ua

- , , I x44 Y. IL, -x - C
*~ La wa La z- l-i 2n - -4U .)')

-i -~ "I -< CoC La C O CD La -
La - 1-aC C , 2I-4- La c - w . cc

La a. cr c - -1 LC.4 La La=C -) cc I.
O~ 0- LJ- .2. 0i ML2JJ r1 U

CC~~~~L 0a CwI .4 01- c-L. 2 3 2
I- Q a - CCrL C --- - L, En -C LLI-

C (-<. WV XC X2 21 E2 (n LaLIXLa-W 1: U W

tCC *Cztf La m La 0. 04 2 -z 0 : La CC w
- 02C < 02.W40 Ll Ua* CI Cw 01 2 02I C

-0 UC =.C~ CO 4-.- ..IL- 02 0- C0-- 2* .CCO- .

Lalw) w 31a cCU02-0L0-- -I-)2U3L .- 20 CC-b- 00*~~~ 0. w2C. 0CCS0-- CZ:0.22 1 4L2 2 .r (
Ld L--I 0220- 1-001-Z0JW 0 IM2C.IO'40 CU-.COO

-C x C La2 mCIO.C-tI Z005 :40 z(wa 32, z 0020 - CCL 0 x23 LaZC -UC~:O Z,1-z .. 0 I 3 C-r-

2 -w Ln ZC 1 4- 4 C0 2C4 W0 x1-I .140' -, .

exC La C C4 CLaC.C CW.- L-e- 0. :32 33 Otf0 1 I 0 4232:
La rI CdLC .4Isr C 0 00- C4J 2(IIn

4
2 CCwW~ xw aWWm

La~X Q- U CCC La-L)CC.Z1L (0 2 La x- 4CCLa

0CC (4 .- CItCC ~ 0 0 :- o t- 0 0 C - - 0 0 0
C. - CC CCt 4 C LaC002 2 2 1 0 2 02 2 0 0 0 0 02222 ,
CCC C 0 .4 CC a.'CCC CC'4-4 C2C- -0CC44C-C a 4

M, 02 01- C-4 CCO-4 _j02 2 . Z Z4 . 2 .2 2 2 2 2 2 2 2 2
30 O.- CCC w *C -L .42C *4l

Un Ca-CLa 0 C En a>.~ 22U00CIaa-L6J-J UOaJ OaaaaaLL~ ~
MOC C) 0Ct.C 0 044 a4L C 0 3 3 3:2 3:o3 2 2 =1:232 33333

.4..4 .1 C.)L Uw C CC LaO-

.4. La C CC 0 -C >ZCUZ O C. 0L

2 3 .4C.44 241C 002030'n !n -
L C. LaC C-T '-40 ,-C 04T -j

00 CT 0 C La

0, 0, U

w44 La-Inf mn

I =
v I

0 .rr0lcn oO4-0,1n- 0C4J *n(0-.rtC1o 0-.4j~k-4-m -. rj
c- m) m5-I41I-J- en- U C 0 00 O ~ l *l.- 4 '- P)lOI)LL)L1enIflimOC MOOm0'NN'

La CC ~ bl %l09 ,0: v6 o Uc 6 0N Dc: im b 3C

CC z C4

I ~ ~ ~ ~ f w04.-----Io r- r-4 v,- r-- ~-t-wCI-IIO aJ-JJII-(.1 (-4144C 0 00 10
01 4 CI1111 4141414. 44-r.4-l' (14s I -1(45- -11-(15I 1I 1.14sc - 1- -11 1 "ilC -14) -1IN))

r- 0

286

4 -

x 0
U, to~I

wU U,
(a fe

C.: ce W

a OW

0 CC (4
n w D.

n~ X
4 u 0 '

x~ zU. wL

24j -~ V -M.V

z,
z

U,Z WW

Z U?

-jC 0- 00 _

I" wV w I" WU . I" c

n X,

w U.

00 Z

C, 0 (

OW Li
0' U

xz. 1 W oU? O Or

P- r

0

V ~ ~~~~~~ tLr.UC.o~r~,
-n rn

I C,

to ~ ~ ~ ~ ~ ~ ~ r elll'r ~~1~rltlM~r

V - *- -287-

0

LO At

to: A- - A- Z)

14 ', 0 0 0 0
- c -j 0 LL

U). - 1 0 GI

A.0 04 0W.
EnC n1 .0 S2 I

z - I- (.1 14 A-- A i

.a -41 .3 'I -3c

x 00 14' 0 CA (4 1*

C.(.'40 0 tA Z3 C'0-A
m1 z 2C1 0 Z 4D 1. w-- 11kw

C.,1 C 4 14 I4 2 5 a0 1 4 0 1_'X
40A)t f - I1 4 .1J =C 0 x) X) (m

A4 4 3- 13 0 24 *2 z .D

C4 I 5 w .4 140 0). cr r4 w

0) L ' -AD- 0 0 4 1. 3 F~0)
Cli ILD >. <* -Z 0 ::A- n13 21

04 -4; Ll Z1 10 0.4 14 -ro *t

1. 2-W 2 0 I. 0 :
1

) 0~i r o2 3 ' -

0 -0 0 Q 2l LM(0 1 (- (0 f 0 1 0 (1 2 3) 0 0
0)~~~~~~~~~~~ LI4(4 ." 4 4 1 4 4 0 1 0 C

-40 1-j I- CAI41 4 0 < . 4 4 4 1 rC .) 4 1 2
1 4' C~~~ S - (, 1 < - 0 - -' CC I4 4 2 2

44I."-2(2 C C, L 21 .- ti L,4 -A cc CC' 1 -0 4 1
0) 0 .2 ". 0 . (-(. ' 1 CC1 . 4 4 W- . 2 . . W W. (4 4 X (1

I . o .14~ CA. r4.. - C--)-2 CA . -l P I 4 1 22 - > CA-t 0,,, IV) mS 55 m mrn Aec A

w1 .)4 4 . 1 4 2 4 1 I 11 l .. ' J 4 3 ' . t - '(- . 2 1 2

Co 141,C L M0- 0 C ~-..2N ML C- LL -. f!U(0- 4C 4.-L, t ml V- 00 CA I - V0) C
0 0 2 -.. (2 702 (4o -- 1- 14 I'll' I'll -- '. M"1- ,- (1C 114

r1r)0v.. (I fl(A. U'L'CL CA 4.1 .I> .L C- .1 1 0 A4(ct(A. 4 ri l 0.0)0AA 00)A C
cc 0 Z 4 ~ 4 (0 1 4 C 0 . 1 1 .' ~ - . . ~ " 4 .1

-. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 2 r'1410 :.. 4L. K 4 1- <040-4 4 ((1 4 24 2
0~~0 CIDI - l . (- - - L - - C 4 ' o - - 1 ' 2 - r - - 0 - C (* 0 1 0 4

.4 I (2 (.- 1> 'iu F 0. - 4 14 c 1 1 1140 - - .. 3-''-.. 13--2884 4 '1 1

L o0n0-, :1.* O.>2 1I. 24 40LL~l 44.0 1(0C111

Cz

ac

tw
x*

0. 0

W u I

00 Z 0
C, 11 Z r-

289I

La

L- (A- I cc
(-L a W C 4

a Da.
Lax ./ U

u. -m La w . coL
W . Di 1-C in D

a o cL w.wLaU.
Ct 0 I a. - -

U) Lr0 a - La W W .
x .. X &i -' Q- -M~'C

Cc -Z CD - 0 Wr.0 'f -
u . L, La a W) W1-W iL 1 . L

a 0C4 . n LflUi.aC

.- aa IE 2/ 0 C. LCOLC4 -Z O ~a
-Z L . a. n. 0 w~a La ca9wia <

I. .-.. W E U), a. L) 'a Z0 0 r -;U))
z ~ ~ C - Q-- a m 0 uc aa It,. * 4

-Cz W.0 i 1 UI o/ Q -OOa &0 -D - 4 'c

Ci C C- C) -. DC 0~ Cc, CaCaC * L i . 0
2. .1 wcca 72 2// i . in ra

.2cc Lai < =C LJ i-La W. c0 0 2 K wi _j.a.- c
W ~ I- 20. I a.D -- 2rrx u/C <i. w-~-a.i

I ~ ~ 0 W-C ICC Waa D..0 C/i CiWuu 0 L, Zi -M = C
LMl N - 0JI ai. 0 -200 ED212 Li * -Li I

a.4 W aCj ai a. r cc -c4 z ClCC) 47 C .
La C-i 0-2OC -cc 2 a2 2 2 - L o-- IU~. i

a. 00 C- 2L. -a. La 10 2L io/ 4C .
ICC-U 4-C il/L ui4 C ii 20 00 0 0W " L C-

C DC -14 -i~ C -- - -1C - - D -O L 4L

a 22 4 na -a . L- - - - 2 IiOJ iA4a

W - 44 L. Ci-O C) i .)) I- 2 a/a .. iC)

-~~~~r La r,0 C.~a C4.D2aL La CSa32L-,aaa 2/D

wl -zi l 0 CC a C

a-a- U) a

.4290

A Lo

0 1 A Tu 1zU Li A HC

t- -a x ' u X - <r < - -a
-Tf -a*- -j dZW

x~ cc 2 . t, *-- - : .- *

0-~~ -'-o' < I u- 2 . r, .. . ~ r -

Ll 41. C. C' WC a- c.C (g4--. Li C 7 O

0 CCCC .4 .-i C. J * .I 0 L

w En _j 40 I *..CJ Q- 0. i C I
-- I- X4 CC .-. ZI 930 M En -2-a HU

-~ ~ w -I .-- w 4 ZU . HI. to - 61 0
C7. 7 C.. wC 7 C 2.. T.' -. L; z 4EMC H

Hm.r C, U (i 4 Li Li go.. C0) 2L
(o S' CCC .4 7 2-C .4 Ofll 2.4l C C

-af0 C 2 E-. wC :: W..a 0.1 H LO2 i

HLO -T IL < a:LLI - aCL CCCLJ CT 2& Li, CDL v4 f

mt (IIH 2x JU+ 1 li4 0--- ~ ~ i 0IC

7. CU CC -1 .17C - 407- CCCCC U1 1~ U, u' 01-

L.-.LiC w- 0. -z -N'CG -42C~- X-CC.UC H' row'- 7x rCV *

C, 0 4WC -1 4D m -4 -<C .- -M Li w Hw -iiwiw M
U ~ ~ ~ ~ ~ ~ ~ ~ ' 0i Li''- -jC o. * C t& C I~ t C .0 2 H £~ o i7 7

.41 w -..- * . -rlwir<E -I- -_J~l 0C .- WLif-C 02 C C0
Cl- 74~C.. to, SCCC f- w CC IX,2 o Li4 C CI~LtC4 C Z

Li4 CCWCC CCCCCC CCCD.I 'XCCCC 7o 0 Cc 2 C 2 C i

SLt4 C * Li L ~ L U C C i ~ C . ' Li In wi4 _j 0-. w Cc wuaC-o
.- Li Of>-C. C~ w >2 CC .i0I-> L ,-CC.t-- WA w- LaI .441 .4CI 4 W

CC ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 004. dIo CI4 I. C. IC C0-4i 2 H * I''* l''*bi r,
'.4 2~C C Zia .'2.-OCC Li I.4-.CCC I42~'CCC U ~ -4fcc tC -CI- 'C H -

.- pCw iC C 0 (Ci 0
10N>I.-C4.

00 7WCI ~
co. i 4 0 C

7 Li Li CC wCC"mP)wWWvwmmm N m oVM V vr

C9CC

H . cg m o nD. r m o r c cIIL vl'oI o : n o0
00 4 c 0 O Cc Im m ",1 0 6

Ow H 4m mI ,m mmp ,)mrr)mPmmmmmI m m
z0 , w
II z -

Li x r ,0 0 0 0 C C 0 0 0 0 0 ,)0 0 0 0 0)0 C 0Wa D4 H 4444M?)44'4M M'44 '4 ''''M Ci.. c-N04 00'4S '44Il'Ci0 UW , C C 1 00000 C 020 0 -0Q0200

U.!4' a~" ca C " O rma a
.40, 1, kO () CNCI IC

01LV l L lfrN m)Q z mmc IC

C, IC ,rLiC 1c 4 ,A ,t r r

H ~ ~ ~)t E mv - u3c.CS r o. 0 0 0 C O . . . t t tt~tIti,fl ?I M ~ -'4
4

v't'''4fhb
Li C (I MO~-IMrime) rIrr MM MMM -IO~e-M rm)?' mlOMO O O~rI e-c MO~e-rI r rI01- M M

2 L291

A EA c-rtoUP
-3 w L) 0

UU 2 to z z 3

oI v4 -Gn anL n y
U ID li - 0 -m i

to ... r- C

W 0 - 0 U . 4 2 ~ L

Li 0 to to w wu 4 5
0,ww 0 5- L 4 1 i C

< W = O w - 4O 0 o p- t

.4t toLJt CCz 0 Z) Q CDc
CL C,(L"I 00 -Z) - toTo wo 0 -f

ZL4 V) 2 LU s- CD nWW CW~ri j Q0 o

14Z. to OIJI - W~ 2CC 5- L. -

01- CC C4 .4 C9 *0 -. A4 W.
Ct1 0 La L3 . "t LI le Uu5 - Z o '- , LU .

to i1 -- C M = i* - > CA mI I

4 tOXj0OEXZ 014 w 2 w 3w nc m
-4.4 ~ ~ ~ u C14 clC4 *4 0 1

C T I- CC I-0t 0e CCo a;;
M CD toc 0, =DII C.UCC 0. 0CC 0.4

W - - - -.CCI -I -.--12-I-'Z-..-4. -

0 0 i 64 Cu) Ci C.64i o , , r r ,

Xnt Z3~t 5-oo 0. 00 02 tblO no

0 0t 1>0 0 n O2 C4t 01 0 14 00 0 o 0
NC Q 0 1, cZ 0 C, 11 0-OtI-S-t

-- t w.L. iS r cr2-9214

0 . CCcc

U. 0n In t

00 C2

at -A I 2 .4A
0 0 0 11- <

C CC 4 CC(40

< o r mm -J 13

CL cc C -- 1' 5 L 0
c >- X: -a. - .12 S C2

In 0 7 0 CO 2z w l W- c
I= w 2 0 U u S UW

'4 u - X w *-.. Sn 0 r

CL 0 C, *4 0I 2 C0. C -. 5 . 4.00 Li 0 0n

In cC cc E, '40 W40 C. A- w5 , c w1
0, 0l X 3 L, 02 I- 2tC w

Cr4". .W 0 '4 0. %* x In 20 '4 1,C 5
=1 I-(0 X X: *4- (n 0- 0 r4 4

(A2 w I- -j C.5I i n.
La) i-. Q z m *. '4 -z or z XO.)I

.4. (0 1. 0c I-± w4 0 2c Eno 4CC 4I0' 0 . '
CI-x (L. * 1 2c 0 C. 2..4 4 (1C S C I fi(4CC(4. (0 (C 2C' 4* r'--~C GW' .40

in flO c4 .. ~~n CD*0 C I-42 1 . (4.-.CCzI'CC DC LU '4

2. (0* 0 2 'I4t uil .4 .' Lt 0 1 -. S I. I- c
04 0 5 .4 mC-X M4 5.' 2) Ea CcfCC - ccO '
w4 (0 C : x m.0 orS 01-. L,- x 4 .- *I(W U (US

XC * C C u--*2 U.CC C zt- -C z (4 4"1-CC() 4 0 0
CS CC C'. Ljl X. 1-tow 11 4 IC. W.4 In-C LJ .24-C f . 2L' La

co a) 1 '4lO C fl. OLL II 4.L20 -- a5 0

La. ' 0 C0 7lI1-..-4S--1- 0 000"C Oo-4t4I' m M 0 ~ lr C.1."0. "00

C, M o 4 r, m - 0(5-,-fm-s- O, r .Z(-1- I S: l M1 1(EDCS 0-

C,1- 0 0C 0) f4 00 0(4.*U C' :n 0

00 C Li C W
Ed - 0 I I C Ma I M'4 N r 1 rl m 1 . 1

0-0 (2 0CC0 0
0.

29

C-,

i

Li

6r r

x. . u .-0 L

(.3 -M W - - c

zjc cc . - - a n (ni

cm hi -. 3) 3 z &
In G1 Il n-n L L 0 z a

wr(2 ~ CW L 2, - , at
DX *a -c U - ta4 - * *

hin 0 a ' a. * (C - L

LiZt c wr 2 *6. 0 .L a 0 0"1DL In On. 0 ix

40 0 - - I-L In 3 611-W En Li 2 N A

b4. u-l wI In 2 LZ awS 3 In (a-C w La(w- I

42C WI- .47 (C I-L L±0k w. w4 inJan 2 0

LU. >CW b cc In LJ .- U-aeI D41 z.- 0 0 !

MO cc 1-42t 7 20(4 022 -Z wI~ -I(X
=4 4 4 1 - CCt-2-&I2 7 X-- -- a

w44 (CC I L-n w C. C Li42 L 44 a (Ci 7) Z* 0 W .2 LC-..2 c
00 u -. X4CC-4-.* L Li 0.Z-LI.CC-Ia I---I44I14- 0 w41-.

6jw - WD .C CC 0 0 .(1 a2.(. Nd m14 C m43C N. ro o
00~ ~~ ~~~~~ 10 owu64 a2 1lta L

00 I- -0 . a v D o imw6-)' u i - La N rCL.. w 4r,
0.0 In C CL ~

C. 0. C. ca . -(

L.4l L-W c1 6c1 - -t

.294

Testing Documention

for the Network Command Language Interpreter

This appendix contains the final set of test cases that

was used to test the network command language interpreter.

Documentation on the rationale for each test input is

included with the test case.

295

TIFE IN TEST DESCRIPTION

HFLP FEOFEST FOP FILE TRANSFER
f.-c IN TEST CArE #5
; I ,FTLE Tr2,Nr rEt.!
FILE TRANSFER SOMAND FrORMAT IS AS FOLLOWS:
NETW2F''T)RANSFEP FILE,FN=FILENAME,DD=DESTDEV,DHDTIESTHOST,SDSOURCEDEVSHSOIRCFHOT
T' MEANS THAT TRANSFER FILE MAY BE ABBREVIATED
PARAMETERS MAY BE ENTERED IN ANY ORDER
ALL PARAMETERS ARE LIMITED TO 20 CHAR
SOURCEDEV CANNOT BE THE CONSOLE OR PRINTER

TYPE IN TEST DESCRIPTION

NELL 'EQE'ST POT' SESSION CONTROL COMMANDS
TFC IN TEST rA'E t6

HELL',SS3IOH COMMANDS!
THE SESSION CONfROL COWMANDU ARE AS FOLLOWSI
NETWORNK, LOCON, LOCALHOSTNAME
NETWORKLOGOUT

THlE LOCALHOSTNAME IS THE NAME OF THE HOST TO WHICH ALL LOCAL COMMANDS WILL
11E ROUTED A1!E NEED NOT BE THE NAME OF THE HOST TO WHICH THE USER IS
PH!YSICALLY CONNECTED. IF NO LOCALHOSTNAME IS SPECIFIED THEN THE HOST TO
WHICH THE USER IS PHYSICALLY CONNECTED IS ASSUMED

TY 'E IN
T
ETT DESCRIPTICN

FELF F\Flr'E-UE. FOP NETWORK CONFIGURATION
TT,'E IN TE.ST CATE 17
HEF,.LT3T COMF I C:A"' t' TTON'
THE HOCTS AND DEVICES THAT ARC ACTIVE ON THE NETWORK ARE AS FOLLOWS:
NETWCRK CONFIGJRATION TABLE PRINTED OUT

TYPE IN TEST DESCRIPTION
AEFTE'JrI2 GrN IfEL F FE(1UEST

T,rE IN TEET CACE #0
H~,

THE ,['tE;TAL COMMArNID FORMATS ARE AS FOLLOWSI
NETU-fI,,TFA!SFER FILE,FILE TRANSFER PARAMETERS

NET4R I,, ,L0ONLOCALHOSTNAME
NETWORK ..L03UT
NET'O K, HELPHELPPARAM

THE HELP rEQUEST PARAMETERS ARE AS FOLLOWSI
F h ILE TFAN?FER
LUIST CCENFiGURATION
'UE5SION COMMANDS
THE PArNTHESES IN THE ABOVE FORMATS INDICATE THAT ONLY THE FIRST LETTER
IS REQUIRED

rYFE IN TEST DESCRIPTION
AEFUA,.A\,IATED FILE TRANSFER HE,\,\LP REQUEST
TYFE IN TEST CASE 19
H.FI
FILE TRANSFER COMMAND FORMAT IS AS FOLLOWS:
NETWORKT)RANSFER FILEFN-FILENAMEDD.DESTDEVDH-DESTHOST.SDaSOURCEDEV.SH"SOURCEHOST

297

op4

C3--
u x -1 2

I-- - i cc I : .1 j a

La F- n UA -

c- & (- ,d U
A.c

*: 114. w-U 1 W1 l

0E U. U U(U UZ;

En (D II.T i 1 0X t

ow zt - ,wz'

LaxrI I -0O xF - l
C, "I - L* 1 dI

2962

T) MEANS THAT TRANSFER FILE MAY BE ABBREVIATED
PARAMCTERS MAY BE ENTERED IN ANY OR.ER
ALL PAR, METERS ARE LIMITED TO 20 CHAR
SCURCCDCV CANNOT BE THE CONSOLE OR PRINTER

TYPE IN TEST DESCRIPTION

,1 EVRF'.',IATED ILSP1SION COMMANDS HELP REOWUEST
TYPE IN TEST CASE $10
Ht

THE SZS3ION CONTR OL COMMANDS ARE AS FOLLOWS:
ET rjt:K, LIOSN,,LOCALHOSTNAME

'ETL3F h, LOGOUT

THE LOCALHOSTNAME IS THE NAME OF THE HOST TO WHICH ALL LOCAL COMMANDS WILL
DE ROUTED ANt: NEED NOT BE THE NAME OF THE HOST TO WHICH THE USER IS
FHYSICALLY CONNECTED. IF NO LOCALHOSTNAME IS SPECIFIED THEN THE HOST TO

1.HICH THE USER IS PHYSICALLY CONNECTED IS ASSUMED

TYPE IN TEST DESCFIPTION

A,REVIATED COQ:FIGUFATION REQUEST
TrFE IN TEST CASE 111

H*
.HE HOSTS AtD DEVICES THAT ARE ACTIVE ON THE NETWORK ARE AS FOLLOWS:
NETWORK CONFIGURATION TABLE PRINTED OUT

IYFE IN TEST DESCRIPTION
NULL FAPMETER IN HELP REQUEST
TYrE IN TEST CASE SlT
H,l

THC GENEr.AL COMMAND FORMATS ARE AS FOLLOWSI
NETLIT :.,TRANSFEP FILEFILE TRANSFER PARAMETERS
NETLORt *LOGON,LOCALHOSTNAME

c T.ORK, LOGCUT
[E T.;OrFr,HELP, HELFPARAM

TIlE lELP REQUEST PARAMETERS ARE AS FOLLOWS:
F)ILE TrANSFER
L)IST CONFIGURATION

S)ESION C MMANDS
ThE FARENTHESES IN THE ABOVE FORMATS INDICATE THAT ONLY THE FIRST LETTER
IS REoUIRED

TYE IN TEST DESCRIPTION

I'.,L~Li' ArA;IETER IN HEI.P REQUEST
TYKE IN TEST CASE 1l3

.Lr, IE TUC F:N
.'ALIE: HELP rE5UEST PA'AMETER--PARAM?'

T;fl GENEFAL COMMAND FORMATS ARE AS FOLLOWS:
NETW RK.TPANSFER FILEFILE TRANSFER PARAMETERS
NETWORK, LOGON, LOCALHOSTNAME
NETWORKLOGOUT
NETWORK,HELP, HELPPARAM

THE HELP REOUEST PARAMFTERS ARE AS FOLLOWS:

F)ILE TRANSFER

298

L>IST CONFIGURATION
slElEION CcMMANDS
T!:E FAREN THESES IN THE ABOVE FORMATS INDICATE THAT ONLY THE FIRST LETTER
is REOUIRED

TYPE IN TEST DESCRIPTION

MULTIPLE FAFAMETERS IN HELP REQUEST!

TYFE IN TEST CASE $14
HIELP ,L,SF!
THE HOSTS AND DEVICES THAT ARE ACTIVE ON THE NETWORK ARE AS FOLLOWS:
NETWORK CONFIGURATION TABLE PRINTED OUT

TYPE IN TEST DESCRIPTION

SESSION CONTROL TEST OF INVALID LOCAL HOST
TYPE IN TEST CASE $It
LO3Ci,ZILOO'
H'OST NOT ACTIVE ON NETWORK--HOST NAME?>
USER LOGGED ON NETWORK UITH USER HOST AS LOCAL HOST

TYPE IN TEST DESCRIPTION
'ECSION CONTROL COMMAND WITH INVALID COMMAND
TYPE IN TEST CASE #16
LOGOFF

LLIt SESSION CONTROL COMMAND--CMD?' LOGOUYT
CJhMAtD ROUTING TABLE SET BACK TO USER HOST

SUMMARY OF FILE TRANSFERS
USER LOGGED OUT

TYPE IN TEST DESCRIPTION
SESSION CONTROL COMMAND WITH NO LOCAL HOST SPECIFIED
TYPE IN TEST CASE #17

USER LOGGED ON NETWORK WITH USER HOST AS LOCAL HOST

TYPE IN TEST DESCRIPTION

SESSI W1 CONTROL COMMAND SHOWING LOGIN ALLOWED
TYrE IN TEST CASE #le

COPIMAN: ROUTING TABLE UPDATED TO SHOW LOCAL HOST AS VAX
USER LOGGED ON NETWORK WITH VAX AS THE LOCAL HOST

TYPE IN TEST DESCRIPTION
,OGOUT COMMAND WITH PARAMETERS
TYPE IN TEST CASE #19

LOGUTVAXI
CObMANCE ROUTING TABLE SET BACK TO USER HOST
SUMMARY OF FILE TRANSFERS
USER LOGGED OUT

299

TYFE IN TEST DESCRIPTION

I GOOFN CGHMAIIN WITH MULTIPLE LOCAL HOSTS SPECIFIED
TNYC IN 'COT CASE 120

CZ MA I ROUTING TABLE UPDATED TO SHOW LOCAL HOST AS VAX
UIJER LOGGED ON NETWORK WITH VAX AS THE LOCAL HOST

. PUN EXTRNET

EXECUTING TEST PROGRAM--TYPE IN # TEST CASES
12
TYFE IN TEST DESCF.IPTICN
2,500 CCMmONC POR. NOVA

TYP'E IN TEST EASE 41
L0'oN, NC ,,
COlPiANv RCITING TABLE UPDATED TO SHOW LOCAL HOST AS NOVA
UZER LOGGED ON NETWORK WITH NOVA AS THE LOCAL HOST

TYFE IN TEST I$ESVRI,'TION
LOC,0N COMMA;D, WITH MULTIPLE NULL PARAMETERS AND ONE VALID ONE
TYPE IN TEST CASE *2
L 7),[N VAX!
USER LOGGED ON NETWORK WITH USER HOST AS LOCAL HOST

TYPE IN TEST DESCRIPTION
LOON USING ABDREVIATIONS
TYPE IN TEST CASE t3

L,N'
!NVALID SESSION CONTROL COMMAND--CND?> LOGON
COMMAND ROUTING TAILE UPDATED TO SHOW LOCAL HOST AS NOVA
USER LOGGED ON NETWORK WITH N AS THE LOCAL HOST

TYPE IN TEST DESCRIPTION
LOMcON TO INTEL USING ABBREVIATION
T(UE IN TEST CAS- *4
LCON, I

COMMAND ROUTING TADPE UPDATED TO SHOW LOCAL HOST AS INTEL
USEI LOGGED ON NETWORK WITH I AS THE LOCAL HOST

TYFF IN TEST DP'arFIPTION
H[L)' PrrI: ;ST WITH ArAMETER THAT IS TOO LONG

T,'FE IN TEST CASE 15
IiE" FFFF'FFFFFFFFFFFFFFFrFFFFFFFF

INV.ALII HELP RELUEST FARAMETER--PARAM?' FFFFFFFFFFFFFFFFFFFFF

FILE TRANSFER COMmAND FOPMAT IS AS FOLLOWS:
?::TJP K, T)RANSFER FILE,FNFILENAME, DD=ESTDEV,DH-DESTHOSTSDSOURCEDEV,SH-SOURCEHOST
r) MEANS THAT TRANSFER FILE MAY BE ABBREVIATED
FARAMETERS MAY BE ENTERED IN ANY ORDER
ALL PARAMETERS ARE LIMITED TO 20 CHAR
SOURCEDEV CANNOT BE THE CONSOLE OR PRINTER

300

TvFE IN TEST DESCRIPTION
"\'Tt P.RAMETER THAT IS EXACTLY 20 CHAR•" ElI; "EST CAT-E IS

'; , r-FrF'FrF' FFFrFFFFFF !
T^A!;3rEA COMIMA;1f FORMAT IS AS FOLLOWS:

NET'.Q)R,,T)RANTFER FILE,FN=FILENAME, DD=DESTDEV,DH=DESTHOSTSDSOURCEDEVSHsSOURCEHOST
T' MEANS THAT TRANSFER FILE MAY BE ABBREVIATED
PARAMETERS MAY BE ENTERED IN AllY ORDER
ALL PARAMETERS ARE LIMITED TO 20 CHAR
SOULFCEDEV CANNOT BE THE CONSOLE OR PRINTER

TYrE IN TEST DESCRIPTION
HELP REOUEST WFITH A FARAMETER THAT IS 21 CHARACTERS LONG

TYPE IN TEST CASE 47
iLLLLLLLLLLLLL LLLLLLLI
INALID HELP REQUEST PARAMETER--PARAM" LLLLLLLLL
TlE HOSTS AND DEVICES THAT ARE ACTIVE ON THE NETWORK ARE AS FOLLOWS:
NETWORK CONFIGURATION TABLC PRINTED OUT

ITYPZ IN TEST DESCPIPTION

SE" TCN ECNT.OL COMMAND WITH A 20 CHAR PARAMETER
T*',F IN TEST CAST tO

* VI'I'NVVV''.'VVVVV VV
cr',i' r OATINE. TABLE UPDATED TO SHOW LOCAL HOST AS VAX
UCER LOGGE: ON NETWORK WITH VVVVVVVVVVVVVVVVVVVV AS THE LOCAL HOST

TYPE IN TEST DESCRIPTION

_'CiC;GTN Cr;t&OL COMMAND WITH A 21 CHAR PARAMETER
TttE IN TEST CASE #9
Lr ,INIITTIIIIIII IIIIITIIIII

2'TC NST ACTIVE ON NETWORK--HOST NAME'> IIIIIIIII
C ,MAND ROUTING TAPLE UPDATED TO SHOW LOCAL HOST AS INTEL
UEF LOGED ON NETWORK WITH IIIIIIIII AS THE LOCAL HOST

TNFE i'l TEST DESCRIPTION
tl'.LL C0'MAND

TPE IN TEST CASE 410

IS CCMND,--CCMMAND FiELD') LOGOUT
ECMMAND FOUTINGO TABLE SET BACK TO USER HOST
SUMMARY OF FILE TRANSFERS
USER LOGGED OUT

301

Appendix

DELNET User's Manual

This appendix contains a user's manual for the network

command language interpreter in its present version as

documented by Appendix E. The manual consists basically of a

description of the step-by-step procedure for using this

program.

Since the lower-level protocols have not been

implemented, it is necessary to log in to the VAX-11/780 to

access the network command language interpreter. This log

in procedure entails the following:

Username: HOBART <CR>

Password: XXX <CR>

WELCOME TO VAX VERSION 1.4

$

At this point, the network command language interpreter

can be activated by typing NETWORK <CR> after the

dollar sign prompt. The network command language

interpreter will respond with

EXECUTING TEST PROGRAM--TYPE IN # TEST CASES

After an integer has been entered by the user, the

network command language interpreter will respond

TYPE IN TEST DESCRIPTION

302

This allows the user to document what testing is being

accomplished by this test input. A carriage return (<CR>)

signals the end of the user input. The network command

language interpreter will then respond

TYPE IN TEST CASE #1

Any of the commands described in the following sections

may then be entered. The command must be terminated with an

exclamation mark and a carriage return. The exclamation

mark is used as a special character to represent the end of

the network command.

FiIe Transfers

A file transfer command consists of the following

string:

TRANSFER FILE,FN=FILENAME,SD=SOURCEDEVICENAME,

SH=SOURCEHOSTNAME,DD=DESTINATIONDEVICENAME,

DH=DESTINATIONHOSTNAME!

The parameters may be entered in any order but may not

be longer than 20 characters each. The maximum parameter

length may be changed by changing the value of MAXPARLNG in

the source code and recompiling and relinking the program.

303

Session Cnrl

The network command language interpreter will accept

the following session control commands:

LOGIN,HOST_NAME!

LOGOUT!

User jp Information

The user can request information by typing any of the

following commands:

HELP!

HELP,FTLE TRANSFER!

HELP,SESSION COMMANDS!

HELP,LIST CONFIGURATION!

The output from these help requests is shown on the

following pages. Finally, Table 10 in the main body is

included here also to show the valid keywords. The

underlined letters are the allowable abbreviations.

304

t r, L H T U...W,

' l' L t' " I'

. ' .. r, ii T Z LH:DEr , M r I" Ru
- Lt.l ~M ' I

r. flr1r , L '!'-Ir. Lr I

-tL L fliI i~l.lt ,r: Di! t P. -

'I, L- I Wt

... A * - ' , . _ i i: ": ra,

305

ti. 1F -~ . . III 4C X /II, H - U -

tlC T-~d rC u. -sj tEu (j ' fL t E , .n. r.: - Mlri'-a

rl(:su-s.L1 Ic~I\Iir~c~r..ci, :1 ,s..~ ~ .: ru.. ... Lt it- fIL -

'.flt~-1 s-I. u~r L, Hl ll tL . L It . I di

306

Table 10

Valid Keywords

Ntwor mmand

LOGIN
LOGOUT
TRANSFER FILE
HELP

Source Host (SH=), Destination Host (DH=) ,

INTEL
NOVA
VAX

Source Device (SD=)

FLOPPYDISK
.HARDDISK
TAPE

Destination Device (lD-)

CONSOLE
FLOPPYDISK
HARDDI SK
PRINTER
TAPE

Null (Defaults to user host)
INTEL
NOVA
VYAX

EILE TRANSFER
LIST CONFIGURATION
SEESSION COMMANDS

307

Captain William C. Hobart, Jr. was born on June 26,

1954 in Valpariso, Florida. In 1972, he graduated from

Cabrillo Senior High School in Lompoc, California. He

attended the United States Air Force Academy from which he

received a Bachelor of Science degree with a major in

Mathematics in 1976. Following graduation, he attended

Communications Maintenance Officer School at Keesler AFB,

Mississippi. Between April 1977 and June 1979, he was

assigned to the Third Combat Communications Group, Air Force

Communications Service at Tinker AFB, Oklahoma, as the

maintenance officer for the Tactical Air Force Base 403

communications element. He entered the Air Force Institute

of Technology in June 1979.

Permanent address: 778 Valley Green Dr

Brentwood, CA 94513

308

UNCLASSIFIED
SECURITY CLASSIFICATION OF T-,S PA',F Ithen [Ot t. r,,'r .J

REPORT DOCUMENTATION P6kGE READ IN;TUCT'(N,;

I REPORT NUM[12 GOVT ACCEL--ION')r, I RECIPIENT'S CATALOG N!'MiFil

AF IT/GP,/EF/ 81,'1-3
4. TITLE (and Sutibrte 5 TYPE OF REPORT 6 PER,02 C)vER:

DESIGN OF A LOCAL COMPUTER NETWORK
FOR THE AIR FORCE INSTITUTE MS Thesis

OF TECHNOLOGY DIGITAL ENGINEERING 6 PERFORMING O1G. REPGIOT NoVBER
LABORATORY
7 AuTHORts) 8 CONTRACT CR GRANT NMRERt;

William C. Hobart, Jr., Captain, USAF

9. PERFORMING ORGA-NIZA'!ON NAME 4., ADDRESS 10. PROGRAM ELEMENT PQOJECT, TASK

Air Force Institute of Technology (AFIT/EN AREA&WORKUN NiMERS

Wright-Patterson AFB, OH 45433

Ii. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Institute of Technology (AFIT/ENI March_1981
Wright-Patterson AFB, OH 45433 13 NUMBER OF PAGES

319
14. MONITORING AGENCY NAME 6 ADDRESS(if different from Controlling 0lite) 15. SECURITY CLASS. (of this reporfl

1Sa, DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT fof this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It dfferent from Report)

I8. SUPPLEMENTARY NOTES A
Approved for public release; IAW AFR 190-17 4,

Frederic C. Lynch, Major,UJSAF

Director of Public Affairs

19r KEY WORDS (Continue on reverse side if necessary and iderdalfv by block ricmLer

Local Computer Network
X.25 Protocol
Computer Interfaces

20 ABSTRACT (Continue on reverse side If necessary and Identify by block nunther

See reverse

DD M 1473 EOITION OF I NOV 65 IS OBSOLETE U

EDD CLAS,C, 1F UNCTASSIFIED
SECURITY CLASSIrICATION OF THIS PAGE (Whn ,s l ntered)

t I MCT A RI PT rT
SECURITY CLASSI=ICATIOt OF THIS PAGE(When Daa Enfered)

20. Abstract

A local computer for the Air Force Institute of
Technology Digital Engineering Laboratory was designed and
the network command language interpreter modules were
implemented. The requirements for this network were
specified by interviewing nine faculty members associated
with the Digital Engineering Laboratory and then translating
their functional requirements into a detailed set of
hardware and software system requirements. Structured
Analysis was used to produce a structured specification for
the applications, host-to-host, network, and link protocol
requirements. Yourdon and Constantine's Transform Analysis
and Transaction Analysis techniques were then used tc
develop a set of module structure charts for the softwarc
design. The network uses a loop topology for the nodes wiLt
a star of un to four hosts connected to each node. The
nodes are implemented using a Universal Network Interface
Device (UNID) developed at the Air Force Institute of
Technology. Initially, the network will include an Intell
Series II Microcomputer Development Station, a Digitall
Equipment Corporation VAX-II/780, and a Data General Nova.
These computers will be connected to the nodes using twistedi
pair and the two UNIDs in the initial configuration will be
interconnected with a duplex fiber optic link supporting
transmi'ssion rates up to 56 Kbs. The X.25 protocol was
selected to implement a host-to-host transfer mechanism in
conjunction with a basic routing algorithm using a lockup
table Etored in each UNID. The network command language
interpreter allows file transfer commands, session control
commands, and user help requests to be parsed and the
appropr.ate parameters passed to lower-level modules.

UNCLASSIFIED
SECURITY CLASSIFICATWOI 1 OF & E'W ' 11t. -

I

